UKBBLatent_Cardiac_20208_DiffAE3D_L128_S42 / DiffAE_support_templates_latent.py
soumickmj's picture
Upload DiffAE
c2ced9d verified
raw
history blame
4.83 kB
from .DiffAE_support_templates import *
def latent_diffusion_config(conf: TrainConfig):
conf.batch_size = 128
conf.train_mode = TrainMode.latent_diffusion
conf.latent_gen_type = GenerativeType.ddim
conf.latent_loss_type = LossType.mse
conf.latent_model_mean_type = ModelMeanType.eps
conf.latent_model_var_type = ModelVarType.fixed_large
conf.latent_rescale_timesteps = False
conf.latent_clip_sample = False
conf.latent_T_eval = 20
conf.latent_znormalize = True
conf.total_samples = 96_000_000
conf.sample_every_samples = 400_000
conf.eval_every_samples = 20_000_000
conf.eval_ema_every_samples = 20_000_000
conf.save_every_samples = 2_000_000
return conf
def latent_diffusion128_config(conf: TrainConfig):
conf = latent_diffusion_config(conf)
conf.batch_size_eval = 32
return conf
def latent_mlp_2048_norm_10layers(conf: TrainConfig):
conf.net_latent_net_type = LatentNetType.skip
conf.net_latent_layers = 10
conf.net_latent_skip_layers = list(range(1, conf.net_latent_layers))
conf.net_latent_activation = Activation.silu
conf.net_latent_num_hid_channels = 2048
conf.net_latent_use_norm = True
conf.net_latent_condition_bias = 1
return conf
def latent_mlp_2048_norm_20layers(conf: TrainConfig):
conf = latent_mlp_2048_norm_10layers(conf)
conf.net_latent_layers = 20
conf.net_latent_skip_layers = list(range(1, conf.net_latent_layers))
return conf
def latent_256_batch_size(conf: TrainConfig):
conf.batch_size = 256
conf.eval_ema_every_samples = 100_000_000
conf.eval_every_samples = 100_000_000
conf.sample_every_samples = 1_000_000
conf.save_every_samples = 2_000_000
conf.total_samples = 301_000_000
return conf
def latent_512_batch_size(conf: TrainConfig):
conf.batch_size = 512
conf.eval_ema_every_samples = 100_000_000
conf.eval_every_samples = 100_000_000
conf.sample_every_samples = 1_000_000
conf.save_every_samples = 5_000_000
conf.total_samples = 501_000_000
return conf
def latent_2048_batch_size(conf: TrainConfig):
conf.batch_size = 2048
conf.eval_ema_every_samples = 200_000_000
conf.eval_every_samples = 200_000_000
conf.sample_every_samples = 4_000_000
conf.save_every_samples = 20_000_000
conf.total_samples = 1_501_000_000
return conf
def adamw_weight_decay(conf: TrainConfig):
conf.optimizer = OptimizerType.adamw
conf.weight_decay = 0.01
return conf
def ffhq128_autoenc_latent():
conf = pretrain_ffhq128_autoenc130M()
conf = latent_diffusion128_config(conf)
conf = latent_mlp_2048_norm_10layers(conf)
conf = latent_256_batch_size(conf)
conf = adamw_weight_decay(conf)
conf.total_samples = 101_000_000
conf.latent_loss_type = LossType.l1
conf.latent_beta_scheduler = 'const0.008'
conf.name = 'ffhq128_autoenc_latent'
return conf
def ffhq256_autoenc_latent():
conf = pretrain_ffhq256_autoenc()
conf = latent_diffusion128_config(conf)
conf = latent_mlp_2048_norm_10layers(conf)
conf = latent_256_batch_size(conf)
conf = adamw_weight_decay(conf)
conf.total_samples = 101_000_000
conf.latent_loss_type = LossType.l1
conf.latent_beta_scheduler = 'const0.008'
conf.eval_ema_every_samples = 200_000_000
conf.eval_every_samples = 200_000_000
conf.sample_every_samples = 4_000_000
conf.name = 'ffhq256_autoenc_latent'
return conf
def horse128_autoenc_latent():
conf = pretrain_horse128()
conf = latent_diffusion128_config(conf)
conf = latent_2048_batch_size(conf)
conf = latent_mlp_2048_norm_20layers(conf)
conf.total_samples = 2_001_000_000
conf.latent_beta_scheduler = 'const0.008'
conf.latent_loss_type = LossType.l1
conf.name = 'horse128_autoenc_latent'
return conf
def bedroom128_autoenc_latent():
conf = pretrain_bedroom128()
conf = latent_diffusion128_config(conf)
conf = latent_2048_batch_size(conf)
conf = latent_mlp_2048_norm_20layers(conf)
conf.total_samples = 2_001_000_000
conf.latent_beta_scheduler = 'const0.008'
conf.latent_loss_type = LossType.l1
conf.name = 'bedroom128_autoenc_latent'
return conf
def celeba64d2c_autoenc_latent():
conf = pretrain_celeba64d2c_72M()
conf = latent_diffusion_config(conf)
conf = latent_512_batch_size(conf)
conf = latent_mlp_2048_norm_10layers(conf)
conf = adamw_weight_decay(conf)
# just for the name
conf.continue_from = PretrainConfig('200M',
f'log-latent/{conf.name}/last.ckpt')
conf.postfix = '_300M'
conf.total_samples = 301_000_000
conf.latent_beta_scheduler = 'const0.008'
conf.latent_loss_type = LossType.l1
conf.name = 'celeba64d2c_autoenc_latent'
return conf