|
import numpy as np |
|
import torch |
|
from rfdiffusion.chemical import INIT_CRDS |
|
from rfdiffusion.util import generate_Cbeta |
|
|
|
PARAMS = { |
|
"DMIN" : 2.0, |
|
"DMAX" : 20.0, |
|
"DBINS" : 36, |
|
"ABINS" : 36, |
|
} |
|
|
|
|
|
def get_pair_dist(a, b): |
|
"""calculate pair distances between two sets of points |
|
|
|
Parameters |
|
---------- |
|
a,b : pytorch tensors of shape [batch,nres,3] |
|
store Cartesian coordinates of two sets of atoms |
|
Returns |
|
------- |
|
dist : pytorch tensor of shape [batch,nres,nres] |
|
stores paitwise distances between atoms in a and b |
|
""" |
|
|
|
dist = torch.cdist(a, b, p=2) |
|
return dist |
|
|
|
|
|
def get_ang(a, b, c): |
|
"""calculate planar angles for all consecutive triples (a[i],b[i],c[i]) |
|
from Cartesian coordinates of three sets of atoms a,b,c |
|
|
|
Parameters |
|
---------- |
|
a,b,c : pytorch tensors of shape [batch,nres,3] |
|
store Cartesian coordinates of three sets of atoms |
|
Returns |
|
------- |
|
ang : pytorch tensor of shape [batch,nres] |
|
stores resulting planar angles |
|
""" |
|
v = a - b |
|
w = c - b |
|
v /= torch.norm(v, dim=-1, keepdim=True) |
|
w /= torch.norm(w, dim=-1, keepdim=True) |
|
vw = torch.sum(v*w, dim=-1) |
|
|
|
return torch.acos(vw) |
|
|
|
|
|
def get_dih(a, b, c, d): |
|
"""calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i]) |
|
given Cartesian coordinates of four sets of atoms a,b,c,d |
|
|
|
Parameters |
|
---------- |
|
a,b,c,d : pytorch tensors or numpy array of shape [batch,nres,3] |
|
store Cartesian coordinates of four sets of atoms |
|
Returns |
|
------- |
|
dih : pytorch tensor or numpy array of shape [batch,nres] |
|
stores resulting dihedrals |
|
""" |
|
convert_to_torch = lambda *arrays: [torch.from_numpy(arr) for arr in arrays] |
|
output_np=False |
|
if isinstance(a, np.ndarray): |
|
output_np=True |
|
a,b,c,d = convert_to_torch(a,b,c,d) |
|
b0 = a - b |
|
b1 = c - b |
|
b2 = d - c |
|
|
|
b1 /= torch.norm(b1, dim=-1, keepdim=True) |
|
|
|
v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1 |
|
w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1 |
|
|
|
x = torch.sum(v*w, dim=-1) |
|
y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1) |
|
output = torch.atan2(y, x) |
|
if output_np: |
|
return output.numpy() |
|
return output |
|
|
|
|
|
def xyz_to_c6d(xyz, params=PARAMS): |
|
"""convert cartesian coordinates into 2d distance |
|
and orientation maps |
|
|
|
Parameters |
|
---------- |
|
xyz : pytorch tensor of shape [batch,nres,3,3] |
|
stores Cartesian coordinates of backbone N,Ca,C atoms |
|
Returns |
|
------- |
|
c6d : pytorch tensor of shape [batch,nres,nres,4] |
|
stores stacked dist,omega,theta,phi 2D maps |
|
""" |
|
|
|
batch = xyz.shape[0] |
|
nres = xyz.shape[1] |
|
|
|
|
|
N = xyz[:,:,0] |
|
Ca = xyz[:,:,1] |
|
C = xyz[:,:,2] |
|
Cb = generate_Cbeta(N, Ca, C) |
|
|
|
|
|
c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device) |
|
|
|
dist = get_pair_dist(Cb,Cb) |
|
dist[torch.isnan(dist)] = 999.9 |
|
c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...] |
|
b,i,j = torch.where(c6d[...,0]<params['DMAX']) |
|
|
|
c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j]) |
|
c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j]) |
|
c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j]) |
|
|
|
|
|
c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9 |
|
|
|
mask = torch.zeros((batch, nres,nres), dtype=xyz.dtype, device=xyz.device) |
|
mask[b,i,j] = 1.0 |
|
return c6d, mask |
|
|
|
def xyz_to_t2d(xyz_t, params=PARAMS): |
|
"""convert template cartesian coordinates into 2d distance |
|
and orientation maps |
|
|
|
Parameters |
|
---------- |
|
xyz_t : pytorch tensor of shape [batch,templ,nres,3,3] |
|
stores Cartesian coordinates of template backbone N,Ca,C atoms |
|
|
|
Returns |
|
------- |
|
t2d : pytorch tensor of shape [batch,nres,nres,37+6+3] |
|
stores stacked dist,omega,theta,phi 2D maps |
|
""" |
|
B, T, L = xyz_t.shape[:3] |
|
c6d, mask = xyz_to_c6d(xyz_t[:,:,:,:3].view(B*T,L,3,3), params=params) |
|
c6d = c6d.view(B, T, L, L, 4) |
|
mask = mask.view(B, T, L, L, 1) |
|
|
|
|
|
dist = dist_to_onehot(c6d[...,0], params) |
|
orien = torch.cat((torch.sin(c6d[...,1:]), torch.cos(c6d[...,1:])), dim=-1)*mask |
|
|
|
mask = ~torch.isnan(c6d[:,:,:,:,0]) |
|
t2d = torch.cat((dist, orien, mask.unsqueeze(-1)), dim=-1) |
|
t2d[torch.isnan(t2d)] = 0.0 |
|
return t2d |
|
|
|
def xyz_to_chi1(xyz_t): |
|
'''convert template cartesian coordinates into chi1 angles |
|
|
|
Parameters |
|
---------- |
|
xyz_t: pytorch tensor of shape [batch, templ, nres, 14, 3] |
|
stores Cartesian coordinates of template atoms. For missing atoms, it should be NaN |
|
|
|
Returns |
|
------- |
|
chi1 : pytorch tensor of shape [batch, templ, nres, 2] |
|
stores cos and sin chi1 angle |
|
''' |
|
B, T, L = xyz_t.shape[:3] |
|
xyz_t = xyz_t.reshape(B*T, L, 14, 3) |
|
|
|
|
|
chi1 = get_dih(xyz_t[:,:,0], xyz_t[:,:,1], xyz_t[:,:,4], xyz_t[:,:,5]) |
|
cos_chi1 = torch.cos(chi1) |
|
sin_chi1 = torch.sin(chi1) |
|
mask_chi1 = ~torch.isnan(chi1) |
|
chi1 = torch.stack((cos_chi1, sin_chi1, mask_chi1), dim=-1) |
|
chi1[torch.isnan(chi1)] = 0.0 |
|
chi1 = chi1.reshape(B, T, L, 3) |
|
return chi1 |
|
|
|
def xyz_to_bbtor(xyz, params=PARAMS): |
|
batch = xyz.shape[0] |
|
nres = xyz.shape[1] |
|
|
|
|
|
N = xyz[:,:,0] |
|
Ca = xyz[:,:,1] |
|
C = xyz[:,:,2] |
|
|
|
|
|
next_N = torch.roll(N, -1, dims=1) |
|
prev_C = torch.roll(C, 1, dims=1) |
|
phi = get_dih(prev_C, N, Ca, C) |
|
psi = get_dih(N, Ca, C, next_N) |
|
|
|
phi[:,0] = 0.0 |
|
psi[:,-1] = 0.0 |
|
|
|
astep = 2.0*np.pi / params['ABINS'] |
|
phi_bin = torch.round((phi+np.pi-astep/2)/astep) |
|
psi_bin = torch.round((psi+np.pi-astep/2)/astep) |
|
return torch.stack([phi_bin, psi_bin], axis=-1).long() |
|
|
|
|
|
def dist_to_onehot(dist, params=PARAMS): |
|
dist[torch.isnan(dist)] = 999.9 |
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=dist.dtype,device=dist.device) |
|
db = torch.bucketize(dist.contiguous(),dbins).long() |
|
dist = torch.nn.functional.one_hot(db, num_classes=params['DBINS']+1).float() |
|
return dist |
|
|
|
def c6d_to_bins(c6d,params=PARAMS): |
|
"""bin 2d distance and orientation maps |
|
""" |
|
|
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
astep = 2.0*np.pi / params['ABINS'] |
|
|
|
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device) |
|
ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device) |
|
ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device) |
|
|
|
db = torch.bucketize(c6d[...,0].contiguous(),dbins) |
|
ob = torch.bucketize(c6d[...,1].contiguous(),ab360) |
|
tb = torch.bucketize(c6d[...,2].contiguous(),ab360) |
|
pb = torch.bucketize(c6d[...,3].contiguous(),ab180) |
|
|
|
ob[db==params['DBINS']] = params['ABINS'] |
|
tb[db==params['DBINS']] = params['ABINS'] |
|
pb[db==params['DBINS']] = params['ABINS']//2 |
|
|
|
return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8) |
|
|
|
|
|
|
|
def dist_to_bins(dist,params=PARAMS): |
|
"""bin 2d distance maps |
|
""" |
|
|
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
db = torch.round((dist-params['DMIN']-dstep/2)/dstep) |
|
|
|
db[db<0] = 0 |
|
db[db>params['DBINS']] = params['DBINS'] |
|
|
|
return db.long() |
|
|
|
|
|
|
|
def c6d_to_bins2(c6d, same_chain, negative=False, params=PARAMS): |
|
"""bin 2d distance and orientation maps |
|
""" |
|
|
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
astep = 2.0*np.pi / params['ABINS'] |
|
|
|
db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep) |
|
ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep) |
|
tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep) |
|
pb = torch.round((c6d[...,3]-astep/2)/astep) |
|
|
|
|
|
db[db<0] = 0 |
|
|
|
|
|
db[db>params['DBINS']] = params['DBINS'] |
|
ob[db==params['DBINS']] = params['ABINS'] |
|
tb[db==params['DBINS']] = params['ABINS'] |
|
pb[db==params['DBINS']] = params['ABINS']//2 |
|
|
|
if negative: |
|
db = torch.where(same_chain.bool(), db.long(), params['DBINS']) |
|
ob = torch.where(same_chain.bool(), ob.long(), params['ABINS']) |
|
tb = torch.where(same_chain.bool(), tb.long(), params['ABINS']) |
|
pb = torch.where(same_chain.bool(), pb.long(), params['ABINS']//2) |
|
|
|
return torch.stack([db,ob,tb,pb],axis=-1).long() |
|
|
|
def get_init_xyz(xyz_t): |
|
|
|
|
|
B, T, L = xyz_t.shape[:3] |
|
init = INIT_CRDS.to(xyz_t.device).reshape(1,1,1,27,3).repeat(B,T,L,1,1) |
|
if torch.isnan(xyz_t).all(): |
|
return init |
|
|
|
mask = torch.isnan(xyz_t[:,:,:,:3]).any(dim=-1).any(dim=-1) |
|
|
|
center_CA = ((~mask[:,:,:,None]) * torch.nan_to_num(xyz_t[:,:,:,1,:])).sum(dim=2) / ((~mask[:,:,:,None]).sum(dim=2)+1e-4) |
|
xyz_t = xyz_t - center_CA.view(B,T,1,1,3) |
|
|
|
idx_s = list() |
|
for i_b in range(B): |
|
for i_T in range(T): |
|
if mask[i_b, i_T].all(): |
|
continue |
|
exist_in_templ = torch.where(~mask[i_b, i_T])[0] |
|
seqmap = (torch.arange(L, device=xyz_t.device)[:,None] - exist_in_templ[None,:]).abs() |
|
seqmap = torch.argmin(seqmap, dim=-1) |
|
idx = torch.gather(exist_in_templ, -1, seqmap) |
|
offset_CA = torch.gather(xyz_t[i_b, i_T, :, 1, :], 0, idx.reshape(L,1).expand(-1,3)) |
|
init[i_b,i_T] += offset_CA.reshape(L,1,3) |
|
|
|
xyz = torch.where(mask.view(B, T, L, 1, 1), init, xyz_t) |
|
return xyz |
|
|