|
import torch.utils.checkpoint as checkpoint |
|
from rfdiffusion.util_module import * |
|
from rfdiffusion.Attention_module import * |
|
from rfdiffusion.SE3_network import SE3TransformerWrapper |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MSAPairStr2MSA(nn.Module): |
|
def __init__(self, d_msa=256, d_pair=128, n_head=8, d_state=16, |
|
d_hidden=32, p_drop=0.15, use_global_attn=False): |
|
super(MSAPairStr2MSA, self).__init__() |
|
self.norm_pair = nn.LayerNorm(d_pair) |
|
self.proj_pair = nn.Linear(d_pair+36, d_pair) |
|
self.norm_state = nn.LayerNorm(d_state) |
|
self.proj_state = nn.Linear(d_state, d_msa) |
|
self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop) |
|
self.row_attn = MSARowAttentionWithBias(d_msa=d_msa, d_pair=d_pair, |
|
n_head=n_head, d_hidden=d_hidden) |
|
if use_global_attn: |
|
self.col_attn = MSAColGlobalAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden) |
|
else: |
|
self.col_attn = MSAColAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden) |
|
self.ff = FeedForwardLayer(d_msa, 4, p_drop=p_drop) |
|
|
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
|
|
self.proj_pair = init_lecun_normal(self.proj_pair) |
|
self.proj_state = init_lecun_normal(self.proj_state) |
|
|
|
|
|
nn.init.zeros_(self.proj_pair.bias) |
|
nn.init.zeros_(self.proj_state.bias) |
|
|
|
def forward(self, msa, pair, rbf_feat, state): |
|
''' |
|
Inputs: |
|
- msa: MSA feature (B, N, L, d_msa) |
|
- pair: Pair feature (B, L, L, d_pair) |
|
- rbf_feat: Ca-Ca distance feature calculated from xyz coordinates (B, L, L, 36) |
|
- xyz: xyz coordinates (B, L, n_atom, 3) |
|
- state: updated node features after SE(3)-Transformer layer (B, L, d_state) |
|
Output: |
|
- msa: Updated MSA feature (B, N, L, d_msa) |
|
''' |
|
B, N, L = msa.shape[:3] |
|
|
|
|
|
pair = self.norm_pair(pair) |
|
pair = torch.cat((pair, rbf_feat), dim=-1) |
|
pair = self.proj_pair(pair) |
|
|
|
|
|
state = self.norm_state(state) |
|
state = self.proj_state(state).reshape(B, 1, L, -1) |
|
msa = msa.index_add(1, torch.tensor([0,], device=state.device), state) |
|
|
|
|
|
msa = msa + self.drop_row(self.row_attn(msa, pair)) |
|
msa = msa + self.col_attn(msa) |
|
msa = msa + self.ff(msa) |
|
|
|
return msa |
|
|
|
class PairStr2Pair(nn.Module): |
|
def __init__(self, d_pair=128, n_head=4, d_hidden=32, d_rbf=36, p_drop=0.15): |
|
super(PairStr2Pair, self).__init__() |
|
|
|
self.emb_rbf = nn.Linear(d_rbf, d_hidden) |
|
self.proj_rbf = nn.Linear(d_hidden, d_pair) |
|
|
|
self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop) |
|
self.drop_col = Dropout(broadcast_dim=2, p_drop=p_drop) |
|
|
|
self.row_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=True) |
|
self.col_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=False) |
|
|
|
self.ff = FeedForwardLayer(d_pair, 2) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
nn.init.kaiming_normal_(self.emb_rbf.weight, nonlinearity='relu') |
|
nn.init.zeros_(self.emb_rbf.bias) |
|
|
|
self.proj_rbf = init_lecun_normal(self.proj_rbf) |
|
nn.init.zeros_(self.proj_rbf.bias) |
|
|
|
def forward(self, pair, rbf_feat): |
|
B, L = pair.shape[:2] |
|
|
|
rbf_feat = self.proj_rbf(F.relu_(self.emb_rbf(rbf_feat))) |
|
|
|
pair = pair + self.drop_row(self.row_attn(pair, rbf_feat)) |
|
pair = pair + self.drop_col(self.col_attn(pair, rbf_feat)) |
|
pair = pair + self.ff(pair) |
|
return pair |
|
|
|
class MSA2Pair(nn.Module): |
|
def __init__(self, d_msa=256, d_pair=128, d_hidden=32, p_drop=0.15): |
|
super(MSA2Pair, self).__init__() |
|
self.norm = nn.LayerNorm(d_msa) |
|
self.proj_left = nn.Linear(d_msa, d_hidden) |
|
self.proj_right = nn.Linear(d_msa, d_hidden) |
|
self.proj_out = nn.Linear(d_hidden*d_hidden, d_pair) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
|
|
self.proj_left = init_lecun_normal(self.proj_left) |
|
self.proj_right = init_lecun_normal(self.proj_right) |
|
nn.init.zeros_(self.proj_left.bias) |
|
nn.init.zeros_(self.proj_right.bias) |
|
|
|
|
|
nn.init.zeros_(self.proj_out.weight) |
|
nn.init.zeros_(self.proj_out.bias) |
|
|
|
def forward(self, msa, pair): |
|
B, N, L = msa.shape[:3] |
|
msa = self.norm(msa) |
|
left = self.proj_left(msa) |
|
right = self.proj_right(msa) |
|
right = right / float(N) |
|
out = einsum('bsli,bsmj->blmij', left, right).reshape(B, L, L, -1) |
|
out = self.proj_out(out) |
|
|
|
pair = pair + out |
|
|
|
return pair |
|
|
|
class SCPred(nn.Module): |
|
def __init__(self, d_msa=256, d_state=32, d_hidden=128, p_drop=0.15): |
|
super(SCPred, self).__init__() |
|
self.norm_s0 = nn.LayerNorm(d_msa) |
|
self.norm_si = nn.LayerNorm(d_state) |
|
self.linear_s0 = nn.Linear(d_msa, d_hidden) |
|
self.linear_si = nn.Linear(d_state, d_hidden) |
|
|
|
|
|
self.linear_1 = nn.Linear(d_hidden, d_hidden) |
|
self.linear_2 = nn.Linear(d_hidden, d_hidden) |
|
self.linear_3 = nn.Linear(d_hidden, d_hidden) |
|
self.linear_4 = nn.Linear(d_hidden, d_hidden) |
|
|
|
|
|
self.linear_out = nn.Linear(d_hidden, 20) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
|
|
self.linear_s0 = init_lecun_normal(self.linear_s0) |
|
self.linear_si = init_lecun_normal(self.linear_si) |
|
self.linear_out = init_lecun_normal(self.linear_out) |
|
nn.init.zeros_(self.linear_s0.bias) |
|
nn.init.zeros_(self.linear_si.bias) |
|
nn.init.zeros_(self.linear_out.bias) |
|
|
|
|
|
nn.init.kaiming_normal_(self.linear_1.weight, nonlinearity='relu') |
|
nn.init.zeros_(self.linear_1.bias) |
|
nn.init.kaiming_normal_(self.linear_3.weight, nonlinearity='relu') |
|
nn.init.zeros_(self.linear_3.bias) |
|
|
|
|
|
nn.init.zeros_(self.linear_2.weight) |
|
nn.init.zeros_(self.linear_2.bias) |
|
nn.init.zeros_(self.linear_4.weight) |
|
nn.init.zeros_(self.linear_4.bias) |
|
|
|
def forward(self, seq, state): |
|
''' |
|
Predict side-chain torsion angles along with backbone torsions |
|
Inputs: |
|
- seq: hidden embeddings corresponding to query sequence (B, L, d_msa) |
|
- state: state feature (output l0 feature) from previous SE3 layer (B, L, d_state) |
|
Outputs: |
|
- si: predicted torsion angles (phi, psi, omega, chi1~4 with cos/sin, Cb bend, Cb twist, CG) (B, L, 10, 2) |
|
''' |
|
B, L = seq.shape[:2] |
|
seq = self.norm_s0(seq) |
|
state = self.norm_si(state) |
|
si = self.linear_s0(seq) + self.linear_si(state) |
|
|
|
si = si + self.linear_2(F.relu_(self.linear_1(F.relu_(si)))) |
|
si = si + self.linear_4(F.relu_(self.linear_3(F.relu_(si)))) |
|
|
|
si = self.linear_out(F.relu_(si)) |
|
return si.view(B, L, 10, 2) |
|
|
|
|
|
class Str2Str(nn.Module): |
|
def __init__(self, d_msa=256, d_pair=128, d_state=16, |
|
SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, p_drop=0.1): |
|
super(Str2Str, self).__init__() |
|
|
|
|
|
self.norm_msa = nn.LayerNorm(d_msa) |
|
self.norm_pair = nn.LayerNorm(d_pair) |
|
self.norm_state = nn.LayerNorm(d_state) |
|
|
|
self.embed_x = nn.Linear(d_msa+d_state, SE3_param['l0_in_features']) |
|
self.embed_e1 = nn.Linear(d_pair, SE3_param['num_edge_features']) |
|
self.embed_e2 = nn.Linear(SE3_param['num_edge_features']+36+1, SE3_param['num_edge_features']) |
|
|
|
self.norm_node = nn.LayerNorm(SE3_param['l0_in_features']) |
|
self.norm_edge1 = nn.LayerNorm(SE3_param['num_edge_features']) |
|
self.norm_edge2 = nn.LayerNorm(SE3_param['num_edge_features']) |
|
|
|
self.se3 = SE3TransformerWrapper(**SE3_param) |
|
self.sc_predictor = SCPred(d_msa=d_msa, d_state=SE3_param['l0_out_features'], |
|
p_drop=p_drop) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
|
|
self.embed_x = init_lecun_normal(self.embed_x) |
|
self.embed_e1 = init_lecun_normal(self.embed_e1) |
|
self.embed_e2 = init_lecun_normal(self.embed_e2) |
|
|
|
|
|
nn.init.zeros_(self.embed_x.bias) |
|
nn.init.zeros_(self.embed_e1.bias) |
|
nn.init.zeros_(self.embed_e2.bias) |
|
|
|
@torch.cuda.amp.autocast(enabled=False) |
|
def forward(self, msa, pair, R_in, T_in, xyz, state, idx, motif_mask, top_k=64, eps=1e-5): |
|
B, N, L = msa.shape[:3] |
|
|
|
if motif_mask is None: |
|
motif_mask = torch.zeros(L).bool() |
|
|
|
|
|
node = self.norm_msa(msa[:,0]) |
|
pair = self.norm_pair(pair) |
|
state = self.norm_state(state) |
|
|
|
node = torch.cat((node, state), dim=-1) |
|
node = self.norm_node(self.embed_x(node)) |
|
pair = self.norm_edge1(self.embed_e1(pair)) |
|
|
|
neighbor = get_seqsep(idx) |
|
rbf_feat = rbf(torch.cdist(xyz[:,:,1], xyz[:,:,1])) |
|
pair = torch.cat((pair, rbf_feat, neighbor), dim=-1) |
|
pair = self.norm_edge2(self.embed_e2(pair)) |
|
|
|
|
|
if top_k != 0: |
|
G, edge_feats = make_topk_graph(xyz[:,:,1,:], pair, idx, top_k=top_k) |
|
else: |
|
G, edge_feats = make_full_graph(xyz[:,:,1,:], pair, idx, top_k=top_k) |
|
l1_feats = xyz - xyz[:,:,1,:].unsqueeze(2) |
|
l1_feats = l1_feats.reshape(B*L, -1, 3) |
|
|
|
|
|
shift = self.se3(G, node.reshape(B*L, -1, 1), l1_feats, edge_feats) |
|
|
|
state = shift['0'].reshape(B, L, -1) |
|
|
|
offset = shift['1'].reshape(B, L, 2, 3) |
|
offset[:,motif_mask,...] = 0 |
|
|
|
delTi = offset[:,:,0,:] / 10.0 |
|
R = offset[:,:,1,:] / 100.0 |
|
|
|
Qnorm = torch.sqrt( 1 + torch.sum(R*R, dim=-1) ) |
|
qA, qB, qC, qD = 1/Qnorm, R[:,:,0]/Qnorm, R[:,:,1]/Qnorm, R[:,:,2]/Qnorm |
|
|
|
delRi = torch.zeros((B,L,3,3), device=xyz.device) |
|
delRi[:,:,0,0] = qA*qA+qB*qB-qC*qC-qD*qD |
|
delRi[:,:,0,1] = 2*qB*qC - 2*qA*qD |
|
delRi[:,:,0,2] = 2*qB*qD + 2*qA*qC |
|
delRi[:,:,1,0] = 2*qB*qC + 2*qA*qD |
|
delRi[:,:,1,1] = qA*qA-qB*qB+qC*qC-qD*qD |
|
delRi[:,:,1,2] = 2*qC*qD - 2*qA*qB |
|
delRi[:,:,2,0] = 2*qB*qD - 2*qA*qC |
|
delRi[:,:,2,1] = 2*qC*qD + 2*qA*qB |
|
delRi[:,:,2,2] = qA*qA-qB*qB-qC*qC+qD*qD |
|
|
|
Ri = einsum('bnij,bnjk->bnik', delRi, R_in) |
|
Ti = delTi + T_in |
|
|
|
alpha = self.sc_predictor(msa[:,0], state) |
|
return Ri, Ti, state, alpha |
|
|
|
class IterBlock(nn.Module): |
|
def __init__(self, d_msa=256, d_pair=128, |
|
n_head_msa=8, n_head_pair=4, |
|
use_global_attn=False, |
|
d_hidden=32, d_hidden_msa=None, p_drop=0.15, |
|
SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}): |
|
super(IterBlock, self).__init__() |
|
if d_hidden_msa == None: |
|
d_hidden_msa = d_hidden |
|
|
|
self.msa2msa = MSAPairStr2MSA(d_msa=d_msa, d_pair=d_pair, |
|
n_head=n_head_msa, |
|
d_state=SE3_param['l0_out_features'], |
|
use_global_attn=use_global_attn, |
|
d_hidden=d_hidden_msa, p_drop=p_drop) |
|
self.msa2pair = MSA2Pair(d_msa=d_msa, d_pair=d_pair, |
|
d_hidden=d_hidden//2, p_drop=p_drop) |
|
|
|
self.pair2pair = PairStr2Pair(d_pair=d_pair, n_head=n_head_pair, |
|
d_hidden=d_hidden, p_drop=p_drop) |
|
self.str2str = Str2Str(d_msa=d_msa, d_pair=d_pair, |
|
d_state=SE3_param['l0_out_features'], |
|
SE3_param=SE3_param, |
|
p_drop=p_drop) |
|
|
|
def forward(self, msa, pair, R_in, T_in, xyz, state, idx, motif_mask, use_checkpoint=False): |
|
rbf_feat = rbf(torch.cdist(xyz[:,:,1,:], xyz[:,:,1,:])) |
|
if use_checkpoint: |
|
msa = checkpoint.checkpoint(create_custom_forward(self.msa2msa), msa, pair, rbf_feat, state) |
|
pair = checkpoint.checkpoint(create_custom_forward(self.msa2pair), msa, pair) |
|
pair = checkpoint.checkpoint(create_custom_forward(self.pair2pair), pair, rbf_feat) |
|
R, T, state, alpha = checkpoint.checkpoint(create_custom_forward(self.str2str, top_k=0), msa, pair, R_in, T_in, xyz, state, idx, motif_mask) |
|
else: |
|
msa = self.msa2msa(msa, pair, rbf_feat, state) |
|
pair = self.msa2pair(msa, pair) |
|
pair = self.pair2pair(pair, rbf_feat) |
|
R, T, state, alpha = self.str2str(msa, pair, R_in, T_in, xyz, state, idx, motif_mask=motif_mask, top_k=0) |
|
|
|
return msa, pair, R, T, state, alpha |
|
|
|
class IterativeSimulator(nn.Module): |
|
def __init__(self, n_extra_block=4, n_main_block=12, n_ref_block=4, |
|
d_msa=256, d_msa_full=64, d_pair=128, d_hidden=32, |
|
n_head_msa=8, n_head_pair=4, |
|
SE3_param_full={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, |
|
SE3_param_topk={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, |
|
p_drop=0.15): |
|
super(IterativeSimulator, self).__init__() |
|
self.n_extra_block = n_extra_block |
|
self.n_main_block = n_main_block |
|
self.n_ref_block = n_ref_block |
|
|
|
self.proj_state = nn.Linear(SE3_param_topk['l0_out_features'], SE3_param_full['l0_out_features']) |
|
|
|
if n_extra_block > 0: |
|
self.extra_block = nn.ModuleList([IterBlock(d_msa=d_msa_full, d_pair=d_pair, |
|
n_head_msa=n_head_msa, |
|
n_head_pair=n_head_pair, |
|
d_hidden_msa=8, |
|
d_hidden=d_hidden, |
|
p_drop=p_drop, |
|
use_global_attn=True, |
|
SE3_param=SE3_param_full) |
|
for i in range(n_extra_block)]) |
|
|
|
|
|
if n_main_block > 0: |
|
self.main_block = nn.ModuleList([IterBlock(d_msa=d_msa, d_pair=d_pair, |
|
n_head_msa=n_head_msa, |
|
n_head_pair=n_head_pair, |
|
d_hidden=d_hidden, |
|
p_drop=p_drop, |
|
use_global_attn=False, |
|
SE3_param=SE3_param_full) |
|
for i in range(n_main_block)]) |
|
|
|
self.proj_state2 = nn.Linear(SE3_param_full['l0_out_features'], SE3_param_topk['l0_out_features']) |
|
|
|
if n_ref_block > 0: |
|
self.str_refiner = Str2Str(d_msa=d_msa, d_pair=d_pair, |
|
d_state=SE3_param_topk['l0_out_features'], |
|
SE3_param=SE3_param_topk, |
|
p_drop=p_drop) |
|
|
|
self.reset_parameter() |
|
def reset_parameter(self): |
|
self.proj_state = init_lecun_normal(self.proj_state) |
|
nn.init.zeros_(self.proj_state.bias) |
|
self.proj_state2 = init_lecun_normal(self.proj_state2) |
|
nn.init.zeros_(self.proj_state2.bias) |
|
|
|
def forward(self, seq, msa, msa_full, pair, xyz_in, state, idx, use_checkpoint=False, motif_mask=None): |
|
""" |
|
input: |
|
seq: query sequence (B, L) |
|
msa: seed MSA embeddings (B, N, L, d_msa) |
|
msa_full: extra MSA embeddings (B, N, L, d_msa_full) |
|
pair: initial residue pair embeddings (B, L, L, d_pair) |
|
xyz_in: initial BB coordinates (B, L, n_atom, 3) |
|
state: initial state features containing mixture of query seq, sidechain, accuracy info (B, L, d_state) |
|
idx: residue index |
|
motif_mask: bool tensor, True if motif position that is frozen, else False(L,) |
|
""" |
|
|
|
B, L = pair.shape[:2] |
|
|
|
if motif_mask is None: |
|
motif_mask = torch.zeros(L).bool() |
|
|
|
R_in = torch.eye(3, device=xyz_in.device).reshape(1,1,3,3).expand(B, L, -1, -1) |
|
T_in = xyz_in[:,:,1].clone() |
|
xyz_in = xyz_in - T_in.unsqueeze(-2) |
|
|
|
state = self.proj_state(state) |
|
|
|
R_s = list() |
|
T_s = list() |
|
alpha_s = list() |
|
for i_m in range(self.n_extra_block): |
|
R_in = R_in.detach() |
|
T_in = T_in.detach() |
|
|
|
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2) |
|
|
|
msa_full, pair, R_in, T_in, state, alpha = self.extra_block[i_m](msa_full, |
|
pair, |
|
R_in, |
|
T_in, |
|
xyz, |
|
state, |
|
idx, |
|
motif_mask=motif_mask, |
|
use_checkpoint=use_checkpoint) |
|
R_s.append(R_in) |
|
T_s.append(T_in) |
|
alpha_s.append(alpha) |
|
|
|
for i_m in range(self.n_main_block): |
|
R_in = R_in.detach() |
|
T_in = T_in.detach() |
|
|
|
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2) |
|
|
|
msa, pair, R_in, T_in, state, alpha = self.main_block[i_m](msa, |
|
pair, |
|
R_in, |
|
T_in, |
|
xyz, |
|
state, |
|
idx, |
|
motif_mask=motif_mask, |
|
use_checkpoint=use_checkpoint) |
|
R_s.append(R_in) |
|
T_s.append(T_in) |
|
alpha_s.append(alpha) |
|
|
|
state = self.proj_state2(state) |
|
for i_m in range(self.n_ref_block): |
|
R_in = R_in.detach() |
|
T_in = T_in.detach() |
|
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2) |
|
R_in, T_in, state, alpha = self.str_refiner(msa, |
|
pair, |
|
R_in, |
|
T_in, |
|
xyz, |
|
state, |
|
idx, |
|
top_k=64, |
|
motif_mask=motif_mask) |
|
R_s.append(R_in) |
|
T_s.append(T_in) |
|
alpha_s.append(alpha) |
|
|
|
R_s = torch.stack(R_s, dim=0) |
|
T_s = torch.stack(T_s, dim=0) |
|
alpha_s = torch.stack(alpha_s, dim=0) |
|
|
|
return msa, pair, R_s, T_s, alpha_s, state |
|
|