|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
|
|
from rfdiffusion.util_module import init_lecun_normal_param |
|
from se3_transformer.model import SE3Transformer |
|
from se3_transformer.model.fiber import Fiber |
|
|
|
class SE3TransformerWrapper(nn.Module): |
|
"""SE(3) equivariant GCN with attention""" |
|
def __init__(self, num_layers=2, num_channels=32, num_degrees=3, n_heads=4, div=4, |
|
l0_in_features=32, l0_out_features=32, |
|
l1_in_features=3, l1_out_features=2, |
|
num_edge_features=32): |
|
super().__init__() |
|
|
|
self.l1_in = l1_in_features |
|
|
|
fiber_edge = Fiber({0: num_edge_features}) |
|
if l1_out_features > 0: |
|
if l1_in_features > 0: |
|
fiber_in = Fiber({0: l0_in_features, 1: l1_in_features}) |
|
fiber_hidden = Fiber.create(num_degrees, num_channels) |
|
fiber_out = Fiber({0: l0_out_features, 1: l1_out_features}) |
|
else: |
|
fiber_in = Fiber({0: l0_in_features}) |
|
fiber_hidden = Fiber.create(num_degrees, num_channels) |
|
fiber_out = Fiber({0: l0_out_features, 1: l1_out_features}) |
|
else: |
|
if l1_in_features > 0: |
|
fiber_in = Fiber({0: l0_in_features, 1: l1_in_features}) |
|
fiber_hidden = Fiber.create(num_degrees, num_channels) |
|
fiber_out = Fiber({0: l0_out_features}) |
|
else: |
|
fiber_in = Fiber({0: l0_in_features}) |
|
fiber_hidden = Fiber.create(num_degrees, num_channels) |
|
fiber_out = Fiber({0: l0_out_features}) |
|
|
|
self.se3 = SE3Transformer(num_layers=num_layers, |
|
fiber_in=fiber_in, |
|
fiber_hidden=fiber_hidden, |
|
fiber_out = fiber_out, |
|
num_heads=n_heads, |
|
channels_div=div, |
|
fiber_edge=fiber_edge, |
|
use_layer_norm=True) |
|
|
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
|
|
|
|
for n, p in self.se3.named_parameters(): |
|
if "bias" in n: |
|
nn.init.zeros_(p) |
|
elif len(p.shape) == 1: |
|
continue |
|
else: |
|
if "radial_func" not in n: |
|
p = init_lecun_normal_param(p) |
|
else: |
|
if "net.6" in n: |
|
nn.init.zeros_(p) |
|
else: |
|
nn.init.kaiming_normal_(p, nonlinearity='relu') |
|
|
|
|
|
|
|
|
|
nn.init.zeros_(self.se3.graph_modules[-1].to_kernel_self['0']) |
|
nn.init.zeros_(self.se3.graph_modules[-1].to_kernel_self['1']) |
|
|
|
def forward(self, G, type_0_features, type_1_features=None, edge_features=None): |
|
if self.l1_in > 0: |
|
node_features = {'0': type_0_features, '1': type_1_features} |
|
else: |
|
node_features = {'0': type_0_features} |
|
edge_features = {'0': edge_features} |
|
return self.se3(G, node_features, edge_features) |
|
|