RFdiffusion / rfdiffusion /AuxiliaryPredictor.py
GlandVergil's picture
Upload 686 files
3cdaa7d verified
import torch
import torch.nn as nn
class DistanceNetwork(nn.Module):
def __init__(self, n_feat, p_drop=0.1):
super(DistanceNetwork, self).__init__()
#
self.proj_symm = nn.Linear(n_feat, 37*2)
self.proj_asymm = nn.Linear(n_feat, 37+19)
self.reset_parameter()
def reset_parameter(self):
# initialize linear layer for final logit prediction
nn.init.zeros_(self.proj_symm.weight)
nn.init.zeros_(self.proj_asymm.weight)
nn.init.zeros_(self.proj_symm.bias)
nn.init.zeros_(self.proj_asymm.bias)
def forward(self, x):
# input: pair info (B, L, L, C)
# predict theta, phi (non-symmetric)
logits_asymm = self.proj_asymm(x)
logits_theta = logits_asymm[:,:,:,:37].permute(0,3,1,2)
logits_phi = logits_asymm[:,:,:,37:].permute(0,3,1,2)
# predict dist, omega
logits_symm = self.proj_symm(x)
logits_symm = logits_symm + logits_symm.permute(0,2,1,3)
logits_dist = logits_symm[:,:,:,:37].permute(0,3,1,2)
logits_omega = logits_symm[:,:,:,37:].permute(0,3,1,2)
return logits_dist, logits_omega, logits_theta, logits_phi
class MaskedTokenNetwork(nn.Module):
def __init__(self, n_feat):
super(MaskedTokenNetwork, self).__init__()
self.proj = nn.Linear(n_feat, 21)
self.reset_parameter()
def reset_parameter(self):
nn.init.zeros_(self.proj.weight)
nn.init.zeros_(self.proj.bias)
def forward(self, x):
B, N, L = x.shape[:3]
logits = self.proj(x).permute(0,3,1,2).reshape(B, -1, N*L)
return logits
class LDDTNetwork(nn.Module):
def __init__(self, n_feat, n_bin_lddt=50):
super(LDDTNetwork, self).__init__()
self.proj = nn.Linear(n_feat, n_bin_lddt)
self.reset_parameter()
def reset_parameter(self):
nn.init.zeros_(self.proj.weight)
nn.init.zeros_(self.proj.bias)
def forward(self, x):
logits = self.proj(x) # (B, L, 50)
return logits.permute(0,2,1)
class ExpResolvedNetwork(nn.Module):
def __init__(self, d_msa, d_state, p_drop=0.1):
super(ExpResolvedNetwork, self).__init__()
self.norm_msa = nn.LayerNorm(d_msa)
self.norm_state = nn.LayerNorm(d_state)
self.proj = nn.Linear(d_msa+d_state, 1)
self.reset_parameter()
def reset_parameter(self):
nn.init.zeros_(self.proj.weight)
nn.init.zeros_(self.proj.bias)
def forward(self, seq, state):
B, L = seq.shape[:2]
seq = self.norm_msa(seq)
state = self.norm_state(state)
feat = torch.cat((seq, state), dim=-1)
logits = self.proj(feat)
return logits.reshape(B, L)