|
import torch |
|
import torch.nn as nn |
|
|
|
class DistanceNetwork(nn.Module): |
|
def __init__(self, n_feat, p_drop=0.1): |
|
super(DistanceNetwork, self).__init__() |
|
|
|
self.proj_symm = nn.Linear(n_feat, 37*2) |
|
self.proj_asymm = nn.Linear(n_feat, 37+19) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
|
|
nn.init.zeros_(self.proj_symm.weight) |
|
nn.init.zeros_(self.proj_asymm.weight) |
|
nn.init.zeros_(self.proj_symm.bias) |
|
nn.init.zeros_(self.proj_asymm.bias) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
logits_asymm = self.proj_asymm(x) |
|
logits_theta = logits_asymm[:,:,:,:37].permute(0,3,1,2) |
|
logits_phi = logits_asymm[:,:,:,37:].permute(0,3,1,2) |
|
|
|
|
|
logits_symm = self.proj_symm(x) |
|
logits_symm = logits_symm + logits_symm.permute(0,2,1,3) |
|
logits_dist = logits_symm[:,:,:,:37].permute(0,3,1,2) |
|
logits_omega = logits_symm[:,:,:,37:].permute(0,3,1,2) |
|
|
|
return logits_dist, logits_omega, logits_theta, logits_phi |
|
|
|
class MaskedTokenNetwork(nn.Module): |
|
def __init__(self, n_feat): |
|
super(MaskedTokenNetwork, self).__init__() |
|
self.proj = nn.Linear(n_feat, 21) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
nn.init.zeros_(self.proj.weight) |
|
nn.init.zeros_(self.proj.bias) |
|
|
|
def forward(self, x): |
|
B, N, L = x.shape[:3] |
|
logits = self.proj(x).permute(0,3,1,2).reshape(B, -1, N*L) |
|
|
|
return logits |
|
|
|
class LDDTNetwork(nn.Module): |
|
def __init__(self, n_feat, n_bin_lddt=50): |
|
super(LDDTNetwork, self).__init__() |
|
self.proj = nn.Linear(n_feat, n_bin_lddt) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
nn.init.zeros_(self.proj.weight) |
|
nn.init.zeros_(self.proj.bias) |
|
|
|
def forward(self, x): |
|
logits = self.proj(x) |
|
|
|
return logits.permute(0,2,1) |
|
|
|
class ExpResolvedNetwork(nn.Module): |
|
def __init__(self, d_msa, d_state, p_drop=0.1): |
|
super(ExpResolvedNetwork, self).__init__() |
|
self.norm_msa = nn.LayerNorm(d_msa) |
|
self.norm_state = nn.LayerNorm(d_state) |
|
self.proj = nn.Linear(d_msa+d_state, 1) |
|
|
|
self.reset_parameter() |
|
|
|
def reset_parameter(self): |
|
nn.init.zeros_(self.proj.weight) |
|
nn.init.zeros_(self.proj.bias) |
|
|
|
def forward(self, seq, state): |
|
B, L = seq.shape[:2] |
|
|
|
seq = self.norm_msa(seq) |
|
state = self.norm_state(state) |
|
feat = torch.cat((seq, state), dim=-1) |
|
logits = self.proj(feat) |
|
return logits.reshape(B, L) |
|
|
|
|
|
|
|
|