Gladiator commited on
Commit
88c176f
1 Parent(s): 4a76adb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: roberta-large_ner_wikiann
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ args: en
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.8462551098177787
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.8634242895518167
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8547534903250638
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9382388000397338
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # roberta-large_ner_wikiann
41
+
42
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the wikiann dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.2783
45
+ - Precision: 0.8463
46
+ - Recall: 0.8634
47
+ - F1: 0.8548
48
+ - Accuracy: 0.9382
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 16
69
+ - eval_batch_size: 16
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: cosine
73
+ - num_epochs: 5
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.3395 | 1.0 | 1250 | 0.2652 | 0.8039 | 0.8308 | 0.8171 | 0.9242 |
80
+ | 0.2343 | 2.0 | 2500 | 0.2431 | 0.8354 | 0.8503 | 0.8428 | 0.9329 |
81
+ | 0.1721 | 3.0 | 3750 | 0.2315 | 0.8330 | 0.8503 | 0.8416 | 0.9352 |
82
+ | 0.1156 | 4.0 | 5000 | 0.2709 | 0.8477 | 0.8634 | 0.8554 | 0.9385 |
83
+ | 0.1026 | 5.0 | 6250 | 0.2783 | 0.8463 | 0.8634 | 0.8548 | 0.9382 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.20.1
89
+ - Pytorch 1.11.0
90
+ - Datasets 2.1.0
91
+ - Tokenizers 0.12.1