GillesEverling commited on
Commit
5c47532
1 Parent(s): 9bd6a16

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.72 +/- 0.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f75da84bbcd385e4512c8adb52e2c8f7881a7b3dfb00df08fdac71a977f1e3
3
+ size 108214
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f947696cdc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f947696ec00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681489849799637271,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArv/ZPl10gznWbhU/rv/ZPl10gznWbhU/rv/ZPl10gznWbhU/rv/ZPl10gznWbhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyxIhPg1oB7+FxrU/+M3Jv/duBL8wcry/voE2P2zGmD9t8ye/88+RP9nkp75snJA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACu/9k+XXSDOdZuFT89fM26Ks8Put55XTuu/9k+XXSDOdZuFT89fM26Ks8Put55XTuu/9k+XXSDOdZuFT89fM26Ks8Put55XTuu/9k+XXSDOdZuFT89fM26Ks8Put55XTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[4.2577881e-01 2.5072964e-04 5.8372247e-01]\n [4.2577881e-01 2.5072964e-04 5.8372247e-01]\n [4.2577881e-01 2.5072964e-04 5.8372247e-01]\n [4.2577881e-01 2.5072964e-04 5.8372247e-01]]",
38
+ "desired_goal": "[[ 0.15729825 -0.52893144 1.4201208 ]\n [-1.5765982 -0.5173182 -1.4722347 ]\n [ 0.7129172 1.1935554 -0.65605813]\n [ 1.1391586 -0.32791784 1.1297736 ]]",
39
+ "observation": "[[ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]\n [ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]\n [ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]\n [ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJWTfPTZ5Kz0LZb49geJ2vT1i4T3eUxA+moArvc79drgosIA+iMB2vf4RFz4Xz0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 1.09077729e-01 4.18636426e-02 9.29661617e-02]\n [-6.02746047e-02 1.10050656e-01 1.40944928e-01]\n [-4.18706909e-02 -5.88873445e-05 2.51343966e-01]\n [-6.02422059e-02 1.47529572e-01 1.96102485e-01]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlUc3wqISEMCUhpRSlIwBbJRLMowBdJRHQKiW5BHCoCN1fZQoaAZoCWgPQwjbTIV4JN4QwJSGlFKUaBVLMmgWR0ColoBPCVKPdX2UKGgGaAloD0MI+P2bFyd+CsCUhpRSlGgVSzJoFkdAqJYjEHdGiHV9lChoBmgJaA9DCHEBaJQujRPAlIaUUpRoFUsyaBZHQKiVl6MR6GB1fZQoaAZoCWgPQwg5Q3HHm7wIwJSGlFKUaBVLMmgWR0Col9mjsUqQdX2UKGgGaAloD0MIyVUsflOYCMCUhpRSlGgVSzJoFkdAqJd1MAWBSXV9lChoBmgJaA9DCOm2RC44Iw3AlIaUUpRoFUsyaBZHQKiXF9ehPCV1fZQoaAZoCWgPQwgcl3FTA80LwJSGlFKUaBVLMmgWR0ColoxxcVxkdX2UKGgGaAloD0MIjqz8MhjjBsCUhpRSlGgVSzJoFkdAqJkgD7qIJ3V9lChoBmgJaA9DCGR3gZICiwXAlIaUUpRoFUsyaBZHQKiYvaews5J1fZQoaAZoCWgPQwjw3Hu45NgKwJSGlFKUaBVLMmgWR0ComGFiz9jxdX2UKGgGaAloD0MIrHR3nQ3JF8CUhpRSlGgVSzJoFkdAqJfXEKmbb3V9lChoBmgJaA9DCCANp8zNtwPAlIaUUpRoFUsyaBZHQKibN4pMHr11fZQoaAZoCWgPQwgMWkjA6BILwJSGlFKUaBVLMmgWR0ComtQ40dildX2UKGgGaAloD0MISFLSw9CKCcCUhpRSlGgVSzJoFkdAqJp3pdKNAHV9lChoBmgJaA9DCO55/rRRnQHAlIaUUpRoFUsyaBZHQKiZ7MwlByF1fZQoaAZoCWgPQwiFsBpLWBsPwJSGlFKUaBVLMmgWR0ConV/bsWwedX2UKGgGaAloD0MIz9ptF5qLCsCUhpRSlGgVSzJoFkdAqJz9a0QbuXV9lChoBmgJaA9DCPsfYK3aVQ7AlIaUUpRoFUsyaBZHQKicoL5ylvZ1fZQoaAZoCWgPQwjEJced0sEHwJSGlFKUaBVLMmgWR0ConBa0x/NJdX2UKGgGaAloD0MI3e7lPjkKC8CUhpRSlGgVSzJoFkdAqJ+XrfLs8nV9lChoBmgJaA9DCBakGYumswTAlIaUUpRoFUsyaBZHQKifM9RrJsB1fZQoaAZoCWgPQwgEyqZc4f0MwJSGlFKUaBVLMmgWR0Contcxj8UFdX2UKGgGaAloD0MIQgjIl1BhCMCUhpRSlGgVSzJoFkdAqJ5NGd7OV3V9lChoBmgJaA9DCBWRYRVvBArAlIaUUpRoFUsyaBZHQKihk11nuiN1fZQoaAZoCWgPQwinWaDdIeUJwJSGlFKUaBVLMmgWR0CooTAKWszVdX2UKGgGaAloD0MIxQPKplzBA8CUhpRSlGgVSzJoFkdAqKDT5ylvZXV9lChoBmgJaA9DCM6LE1/tiArAlIaUUpRoFUsyaBZHQKigSaPS2IB1fZQoaAZoCWgPQwjvjozV5t8OwJSGlFKUaBVLMmgWR0Coo3YW1twadX2UKGgGaAloD0MIUn3nFyXoD8CUhpRSlGgVSzJoFkdAqKMSo0hvBXV9lChoBmgJaA9DCJnxttJrswfAlIaUUpRoFUsyaBZHQKiitmnO0LN1fZQoaAZoCWgPQwgAHebLC3ANwJSGlFKUaBVLMmgWR0CooixEORT1dX2UKGgGaAloD0MIPzVeuklMB8CUhpRSlGgVSzJoFkdAqKWmWY4Qz3V9lChoBmgJaA9DCNpwWBr4UQnAlIaUUpRoFUsyaBZHQKilQr7wazh1fZQoaAZoCWgPQwhoXg6779gHwJSGlFKUaBVLMmgWR0CopOaVMVUNdX2UKGgGaAloD0MIpkI8Ei+PBsCUhpRSlGgVSzJoFkdAqKReIMz/InV9lChoBmgJaA9DCIEGmzqP6gLAlIaUUpRoFUsyaBZHQKinYmCROlB1fZQoaAZoCWgPQwhPXI5XIHoBwJSGlFKUaBVLMmgWR0Copv75VOsUdX2UKGgGaAloD0MINiOD3EX4A8CUhpRSlGgVSzJoFkdAqKai4FzMinV9lChoBmgJaA9DCMODZte91RLAlIaUUpRoFUsyaBZHQKimGGcnVoZ1fZQoaAZoCWgPQwgAjj17LpMFwJSGlFKUaBVLMmgWR0CoqR3Kji4sdX2UKGgGaAloD0MIkBSRYRXvAsCUhpRSlGgVSzJoFkdAqKi69mHxjXV9lChoBmgJaA9DCHkj88gfLAfAlIaUUpRoFUsyaBZHQKioXtl7MPl1fZQoaAZoCWgPQwijVwOUhvoKwJSGlFKUaBVLMmgWR0Cop9TtsvZidX2UKGgGaAloD0MI9Kj4vyMKCsCUhpRSlGgVSzJoFkdAqKriji4rjHV9lChoBmgJaA9DCEGDTZ1HBRDAlIaUUpRoFUsyaBZHQKiqfujynUF1fZQoaAZoCWgPQwgXLquwGeAEwJSGlFKUaBVLMmgWR0CoqiJGWldkdX2UKGgGaAloD0MIXTKOkexxBMCUhpRSlGgVSzJoFkdAqKmX+Q2dd3V9lChoBmgJaA9DCKWGNgAbIBPAlIaUUpRoFUsyaBZHQKisYCEpRXR1fZQoaAZoCWgPQwhNhuP5DAgHwJSGlFKUaBVLMmgWR0Coq/uwPiDNdX2UKGgGaAloD0MIb37DRIN0BMCUhpRSlGgVSzJoFkdAqKueicoYvXV9lChoBmgJaA9DCFjnGJC9/gDAlIaUUpRoFUsyaBZHQKirE0l7dBV1fZQoaAZoCWgPQwjRkzKpoe0KwJSGlFKUaBVLMmgWR0CorUMXaakRdX2UKGgGaAloD0MIsDkHz4SGA8CUhpRSlGgVSzJoFkdAqKzetW+49XV9lChoBmgJaA9DCMh8QKAzaQ3AlIaUUpRoFUsyaBZHQKisgXHim2t1fZQoaAZoCWgPQwgsuYrFb9oRwJSGlFKUaBVLMmgWR0Coq/X6hxo7dX2UKGgGaAloD0MI7j7HR4uzBcCUhpRSlGgVSzJoFkdAqK4yBPKuCHV9lChoBmgJaA9DCIGWrmAb0QjAlIaUUpRoFUsyaBZHQKitzaHsTnJ1fZQoaAZoCWgPQwjAzeLFwpAFwJSGlFKUaBVLMmgWR0CorXBY3eendX2UKGgGaAloD0MIajNOQ1QhB8CUhpRSlGgVSzJoFkdAqKzlMbm2cHV9lChoBmgJaA9DCNQMqaJ41Q/AlIaUUpRoFUsyaBZHQKivJW5paid1fZQoaAZoCWgPQwheLAyR05cOwJSGlFKUaBVLMmgWR0CorsF10T11dX2UKGgGaAloD0MIbCIzF7j8BsCUhpRSlGgVSzJoFkdAqK5lY0VJtnV9lChoBmgJaA9DCAJFLGLY4QbAlIaUUpRoFUsyaBZHQKit2lw97nh1fZQoaAZoCWgPQwhO0CaHT9oNwJSGlFKUaBVLMmgWR0CosBM0YTCcdX2UKGgGaAloD0MIGm8rvTb7CsCUhpRSlGgVSzJoFkdAqK+uy3Td+HV9lChoBmgJaA9DCBLYnINnwgvAlIaUUpRoFUsyaBZHQKivUZb6guh1fZQoaAZoCWgPQwgplltaDckFwJSGlFKUaBVLMmgWR0CorsYgA6uGdX2UKGgGaAloD0MIYye8BKeeCMCUhpRSlGgVSzJoFkdAqLEBjpcHGHV9lChoBmgJaA9DCLXhsDTwYwnAlIaUUpRoFUsyaBZHQKiwnSGahHt1fZQoaAZoCWgPQwioNc07ThELwJSGlFKUaBVLMmgWR0CosD+4TbnHdX2UKGgGaAloD0MIRnnm5bAbB8CUhpRSlGgVSzJoFkdAqK+0ZzgdfnV9lChoBmgJaA9DCK00KQXd3hDAlIaUUpRoFUsyaBZHQKix8g+Qlrx1fZQoaAZoCWgPQwjxnC0gtP4JwJSGlFKUaBVLMmgWR0CosY2KdhAodX2UKGgGaAloD0MISDMWTWcHBcCUhpRSlGgVSzJoFkdAqLEwCr92o3V9lChoBmgJaA9DCFoQyvs4qhDAlIaUUpRoFUsyaBZHQKiwpJmNBGB1fZQoaAZoCWgPQwicTrLV5dQJwJSGlFKUaBVLMmgWR0Cost06xPfsdX2UKGgGaAloD0MINNWT+UefCcCUhpRSlGgVSzJoFkdAqLJ4u9OARXV9lChoBmgJaA9DCEpenWNAlgbAlIaUUpRoFUsyaBZHQKiyG3cYZVJ1fZQoaAZoCWgPQwjulXmrrqMDwJSGlFKUaBVLMmgWR0CosY/seGO/dX2UKGgGaAloD0MI6x9EMuQYCcCUhpRSlGgVSzJoFkdAqLPWX1J173V9lChoBmgJaA9DCCasjbETbhDAlIaUUpRoFUsyaBZHQKizcx33Ycx1fZQoaAZoCWgPQwhi26LMBrkEwJSGlFKUaBVLMmgWR0CosxYJ3PiUdX2UKGgGaAloD0MIca/MW3XdBsCUhpRSlGgVSzJoFkdAqLKKqABkqnV9lChoBmgJaA9DCJoHsMivvw/AlIaUUpRoFUsyaBZHQKi0uOby6MB1fZQoaAZoCWgPQwhQ4J18emwKwJSGlFKUaBVLMmgWR0CotFSFoL5RdX2UKGgGaAloD0MIV1pG6j31CcCUhpRSlGgVSzJoFkdAqLP3MhX8wnV9lChoBmgJaA9DCFRU/UrnwwjAlIaUUpRoFUsyaBZHQKiza8/Uvwp1fZQoaAZoCWgPQwisWPymsDINwJSGlFKUaBVLMmgWR0Cota59NN8FdX2UKGgGaAloD0MIgLdAguIHB8CUhpRSlGgVSzJoFkdAqLVJ86V+qnV9lChoBmgJaA9DCFbUYBqGjwLAlIaUUpRoFUsyaBZHQKi07KRuCPJ1fZQoaAZoCWgPQwg//WfNj38FwJSGlFKUaBVLMmgWR0CotGE4vN/wdX2UKGgGaAloD0MIGSDRBIoYD8CUhpRSlGgVSzJoFkdAqLamlImPYHV9lChoBmgJaA9DCKHa4ET0CwXAlIaUUpRoFUsyaBZHQKi2QkvboKV1fZQoaAZoCWgPQwjTa7OxEpMFwJSGlFKUaBVLMmgWR0CoteTxoZhsdX2UKGgGaAloD0MI3gVKCiygD8CUhpRSlGgVSzJoFkdAqLVZzaK1onV9lChoBmgJaA9DCCKl2TwO4wvAlIaUUpRoFUsyaBZHQKi31jH4oJB1fZQoaAZoCWgPQwgH6/8c5msCwJSGlFKUaBVLMmgWR0Cot3LjYI0JdX2UKGgGaAloD0MIFOgTeZLUB8CUhpRSlGgVSzJoFkdAqLcVkOI683V9lChoBmgJaA9DCEyIuaRqGwXAlIaUUpRoFUsyaBZHQKi2ilMRHwx1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9dae10abac67660ce0bc795fb110fa037ad505c2ab7d64ada3196047eae34a3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c78aed5768d3e68f10abc58a9bc8b53534713e966f76bcb47acb2b1bfb277be6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f947696cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f947696ec00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681489849799637271, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArv/ZPl10gznWbhU/rv/ZPl10gznWbhU/rv/ZPl10gznWbhU/rv/ZPl10gznWbhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyxIhPg1oB7+FxrU/+M3Jv/duBL8wcry/voE2P2zGmD9t8ye/88+RP9nkp75snJA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACu/9k+XXSDOdZuFT89fM26Ks8Put55XTuu/9k+XXSDOdZuFT89fM26Ks8Put55XTuu/9k+XXSDOdZuFT89fM26Ks8Put55XTuu/9k+XXSDOdZuFT89fM26Ks8Put55XTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[4.2577881e-01 2.5072964e-04 5.8372247e-01]\n [4.2577881e-01 2.5072964e-04 5.8372247e-01]\n [4.2577881e-01 2.5072964e-04 5.8372247e-01]\n [4.2577881e-01 2.5072964e-04 5.8372247e-01]]", "desired_goal": "[[ 0.15729825 -0.52893144 1.4201208 ]\n [-1.5765982 -0.5173182 -1.4722347 ]\n [ 0.7129172 1.1935554 -0.65605813]\n [ 1.1391586 -0.32791784 1.1297736 ]]", "observation": "[[ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]\n [ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]\n [ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]\n [ 4.2577881e-01 2.5072964e-04 5.8372247e-01 -1.5677285e-03\n -5.4858869e-04 3.3794562e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJWTfPTZ5Kz0LZb49geJ2vT1i4T3eUxA+moArvc79drgosIA+iMB2vf4RFz4Xz0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.09077729e-01 4.18636426e-02 9.29661617e-02]\n [-6.02746047e-02 1.10050656e-01 1.40944928e-01]\n [-4.18706909e-02 -5.88873445e-05 2.51343966e-01]\n [-6.02422059e-02 1.47529572e-01 1.96102485e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlUc3wqISEMCUhpRSlIwBbJRLMowBdJRHQKiW5BHCoCN1fZQoaAZoCWgPQwjbTIV4JN4QwJSGlFKUaBVLMmgWR0ColoBPCVKPdX2UKGgGaAloD0MI+P2bFyd+CsCUhpRSlGgVSzJoFkdAqJYjEHdGiHV9lChoBmgJaA9DCHEBaJQujRPAlIaUUpRoFUsyaBZHQKiVl6MR6GB1fZQoaAZoCWgPQwg5Q3HHm7wIwJSGlFKUaBVLMmgWR0Col9mjsUqQdX2UKGgGaAloD0MIyVUsflOYCMCUhpRSlGgVSzJoFkdAqJd1MAWBSXV9lChoBmgJaA9DCOm2RC44Iw3AlIaUUpRoFUsyaBZHQKiXF9ehPCV1fZQoaAZoCWgPQwgcl3FTA80LwJSGlFKUaBVLMmgWR0ColoxxcVxkdX2UKGgGaAloD0MIjqz8MhjjBsCUhpRSlGgVSzJoFkdAqJkgD7qIJ3V9lChoBmgJaA9DCGR3gZICiwXAlIaUUpRoFUsyaBZHQKiYvaews5J1fZQoaAZoCWgPQwjw3Hu45NgKwJSGlFKUaBVLMmgWR0ComGFiz9jxdX2UKGgGaAloD0MIrHR3nQ3JF8CUhpRSlGgVSzJoFkdAqJfXEKmbb3V9lChoBmgJaA9DCCANp8zNtwPAlIaUUpRoFUsyaBZHQKibN4pMHr11fZQoaAZoCWgPQwgMWkjA6BILwJSGlFKUaBVLMmgWR0ComtQ40dildX2UKGgGaAloD0MISFLSw9CKCcCUhpRSlGgVSzJoFkdAqJp3pdKNAHV9lChoBmgJaA9DCO55/rRRnQHAlIaUUpRoFUsyaBZHQKiZ7MwlByF1fZQoaAZoCWgPQwiFsBpLWBsPwJSGlFKUaBVLMmgWR0ConV/bsWwedX2UKGgGaAloD0MIz9ptF5qLCsCUhpRSlGgVSzJoFkdAqJz9a0QbuXV9lChoBmgJaA9DCPsfYK3aVQ7AlIaUUpRoFUsyaBZHQKicoL5ylvZ1fZQoaAZoCWgPQwjEJced0sEHwJSGlFKUaBVLMmgWR0ConBa0x/NJdX2UKGgGaAloD0MI3e7lPjkKC8CUhpRSlGgVSzJoFkdAqJ+XrfLs8nV9lChoBmgJaA9DCBakGYumswTAlIaUUpRoFUsyaBZHQKifM9RrJsB1fZQoaAZoCWgPQwgEyqZc4f0MwJSGlFKUaBVLMmgWR0Contcxj8UFdX2UKGgGaAloD0MIQgjIl1BhCMCUhpRSlGgVSzJoFkdAqJ5NGd7OV3V9lChoBmgJaA9DCBWRYRVvBArAlIaUUpRoFUsyaBZHQKihk11nuiN1fZQoaAZoCWgPQwinWaDdIeUJwJSGlFKUaBVLMmgWR0CooTAKWszVdX2UKGgGaAloD0MIxQPKplzBA8CUhpRSlGgVSzJoFkdAqKDT5ylvZXV9lChoBmgJaA9DCM6LE1/tiArAlIaUUpRoFUsyaBZHQKigSaPS2IB1fZQoaAZoCWgPQwjvjozV5t8OwJSGlFKUaBVLMmgWR0Coo3YW1twadX2UKGgGaAloD0MIUn3nFyXoD8CUhpRSlGgVSzJoFkdAqKMSo0hvBXV9lChoBmgJaA9DCJnxttJrswfAlIaUUpRoFUsyaBZHQKiitmnO0LN1fZQoaAZoCWgPQwgAHebLC3ANwJSGlFKUaBVLMmgWR0CooixEORT1dX2UKGgGaAloD0MIPzVeuklMB8CUhpRSlGgVSzJoFkdAqKWmWY4Qz3V9lChoBmgJaA9DCNpwWBr4UQnAlIaUUpRoFUsyaBZHQKilQr7wazh1fZQoaAZoCWgPQwhoXg6779gHwJSGlFKUaBVLMmgWR0CopOaVMVUNdX2UKGgGaAloD0MIpkI8Ei+PBsCUhpRSlGgVSzJoFkdAqKReIMz/InV9lChoBmgJaA9DCIEGmzqP6gLAlIaUUpRoFUsyaBZHQKinYmCROlB1fZQoaAZoCWgPQwhPXI5XIHoBwJSGlFKUaBVLMmgWR0Copv75VOsUdX2UKGgGaAloD0MINiOD3EX4A8CUhpRSlGgVSzJoFkdAqKai4FzMinV9lChoBmgJaA9DCMODZte91RLAlIaUUpRoFUsyaBZHQKimGGcnVoZ1fZQoaAZoCWgPQwgAjj17LpMFwJSGlFKUaBVLMmgWR0CoqR3Kji4sdX2UKGgGaAloD0MIkBSRYRXvAsCUhpRSlGgVSzJoFkdAqKi69mHxjXV9lChoBmgJaA9DCHkj88gfLAfAlIaUUpRoFUsyaBZHQKioXtl7MPl1fZQoaAZoCWgPQwijVwOUhvoKwJSGlFKUaBVLMmgWR0Cop9TtsvZidX2UKGgGaAloD0MI9Kj4vyMKCsCUhpRSlGgVSzJoFkdAqKriji4rjHV9lChoBmgJaA9DCEGDTZ1HBRDAlIaUUpRoFUsyaBZHQKiqfujynUF1fZQoaAZoCWgPQwgXLquwGeAEwJSGlFKUaBVLMmgWR0CoqiJGWldkdX2UKGgGaAloD0MIXTKOkexxBMCUhpRSlGgVSzJoFkdAqKmX+Q2dd3V9lChoBmgJaA9DCKWGNgAbIBPAlIaUUpRoFUsyaBZHQKisYCEpRXR1fZQoaAZoCWgPQwhNhuP5DAgHwJSGlFKUaBVLMmgWR0Coq/uwPiDNdX2UKGgGaAloD0MIb37DRIN0BMCUhpRSlGgVSzJoFkdAqKueicoYvXV9lChoBmgJaA9DCFjnGJC9/gDAlIaUUpRoFUsyaBZHQKirE0l7dBV1fZQoaAZoCWgPQwjRkzKpoe0KwJSGlFKUaBVLMmgWR0CorUMXaakRdX2UKGgGaAloD0MIsDkHz4SGA8CUhpRSlGgVSzJoFkdAqKzetW+49XV9lChoBmgJaA9DCMh8QKAzaQ3AlIaUUpRoFUsyaBZHQKisgXHim2t1fZQoaAZoCWgPQwgsuYrFb9oRwJSGlFKUaBVLMmgWR0Coq/X6hxo7dX2UKGgGaAloD0MI7j7HR4uzBcCUhpRSlGgVSzJoFkdAqK4yBPKuCHV9lChoBmgJaA9DCIGWrmAb0QjAlIaUUpRoFUsyaBZHQKitzaHsTnJ1fZQoaAZoCWgPQwjAzeLFwpAFwJSGlFKUaBVLMmgWR0CorXBY3eendX2UKGgGaAloD0MIajNOQ1QhB8CUhpRSlGgVSzJoFkdAqKzlMbm2cHV9lChoBmgJaA9DCNQMqaJ41Q/AlIaUUpRoFUsyaBZHQKivJW5paid1fZQoaAZoCWgPQwheLAyR05cOwJSGlFKUaBVLMmgWR0CorsF10T11dX2UKGgGaAloD0MIbCIzF7j8BsCUhpRSlGgVSzJoFkdAqK5lY0VJtnV9lChoBmgJaA9DCAJFLGLY4QbAlIaUUpRoFUsyaBZHQKit2lw97nh1fZQoaAZoCWgPQwhO0CaHT9oNwJSGlFKUaBVLMmgWR0CosBM0YTCcdX2UKGgGaAloD0MIGm8rvTb7CsCUhpRSlGgVSzJoFkdAqK+uy3Td+HV9lChoBmgJaA9DCBLYnINnwgvAlIaUUpRoFUsyaBZHQKivUZb6guh1fZQoaAZoCWgPQwgplltaDckFwJSGlFKUaBVLMmgWR0CorsYgA6uGdX2UKGgGaAloD0MIYye8BKeeCMCUhpRSlGgVSzJoFkdAqLEBjpcHGHV9lChoBmgJaA9DCLXhsDTwYwnAlIaUUpRoFUsyaBZHQKiwnSGahHt1fZQoaAZoCWgPQwioNc07ThELwJSGlFKUaBVLMmgWR0CosD+4TbnHdX2UKGgGaAloD0MIRnnm5bAbB8CUhpRSlGgVSzJoFkdAqK+0ZzgdfnV9lChoBmgJaA9DCK00KQXd3hDAlIaUUpRoFUsyaBZHQKix8g+Qlrx1fZQoaAZoCWgPQwjxnC0gtP4JwJSGlFKUaBVLMmgWR0CosY2KdhAodX2UKGgGaAloD0MISDMWTWcHBcCUhpRSlGgVSzJoFkdAqLEwCr92o3V9lChoBmgJaA9DCFoQyvs4qhDAlIaUUpRoFUsyaBZHQKiwpJmNBGB1fZQoaAZoCWgPQwicTrLV5dQJwJSGlFKUaBVLMmgWR0Cost06xPfsdX2UKGgGaAloD0MINNWT+UefCcCUhpRSlGgVSzJoFkdAqLJ4u9OARXV9lChoBmgJaA9DCEpenWNAlgbAlIaUUpRoFUsyaBZHQKiyG3cYZVJ1fZQoaAZoCWgPQwjulXmrrqMDwJSGlFKUaBVLMmgWR0CosY/seGO/dX2UKGgGaAloD0MI6x9EMuQYCcCUhpRSlGgVSzJoFkdAqLPWX1J173V9lChoBmgJaA9DCCasjbETbhDAlIaUUpRoFUsyaBZHQKizcx33Ycx1fZQoaAZoCWgPQwhi26LMBrkEwJSGlFKUaBVLMmgWR0CosxYJ3PiUdX2UKGgGaAloD0MIca/MW3XdBsCUhpRSlGgVSzJoFkdAqLKKqABkqnV9lChoBmgJaA9DCJoHsMivvw/AlIaUUpRoFUsyaBZHQKi0uOby6MB1fZQoaAZoCWgPQwhQ4J18emwKwJSGlFKUaBVLMmgWR0CotFSFoL5RdX2UKGgGaAloD0MIV1pG6j31CcCUhpRSlGgVSzJoFkdAqLP3MhX8wnV9lChoBmgJaA9DCFRU/UrnwwjAlIaUUpRoFUsyaBZHQKiza8/Uvwp1fZQoaAZoCWgPQwisWPymsDINwJSGlFKUaBVLMmgWR0Cota59NN8FdX2UKGgGaAloD0MIgLdAguIHB8CUhpRSlGgVSzJoFkdAqLVJ86V+qnV9lChoBmgJaA9DCFbUYBqGjwLAlIaUUpRoFUsyaBZHQKi07KRuCPJ1fZQoaAZoCWgPQwg//WfNj38FwJSGlFKUaBVLMmgWR0CotGE4vN/wdX2UKGgGaAloD0MIGSDRBIoYD8CUhpRSlGgVSzJoFkdAqLamlImPYHV9lChoBmgJaA9DCKHa4ET0CwXAlIaUUpRoFUsyaBZHQKi2QkvboKV1fZQoaAZoCWgPQwjTa7OxEpMFwJSGlFKUaBVLMmgWR0CoteTxoZhsdX2UKGgGaAloD0MI3gVKCiygD8CUhpRSlGgVSzJoFkdAqLVZzaK1onV9lChoBmgJaA9DCCKl2TwO4wvAlIaUUpRoFUsyaBZHQKi31jH4oJB1fZQoaAZoCWgPQwgH6/8c5msCwJSGlFKUaBVLMmgWR0Cot3LjYI0JdX2UKGgGaAloD0MIFOgTeZLUB8CUhpRSlGgVSzJoFkdAqLcVkOI683V9lChoBmgJaA9DCEyIuaRqGwXAlIaUUpRoFUsyaBZHQKi2ilMRHwx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (797 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.723244744166732, "std_reward": 0.6213896082502508, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-14T17:37:34.145013"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75becf75708a4a35d6117f1a48779ec3859d3189a4a57c1d097e0df40336d099
3
+ size 2381