initial commit
Browse files- .gitattributes +1 -0
- PPO_spaceship.zip +3 -0
- PPO_spaceship/_stable_baselines3_version +1 -0
- PPO_spaceship/data +94 -0
- PPO_spaceship/policy.optimizer.pth +3 -0
- PPO_spaceship/policy.pth +3 -0
- PPO_spaceship/pytorch_variables.pth +3 -0
- PPO_spaceship/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO_spaceship.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:186dbb039d8f6f16b10ce26a0d8761d46624d0856ac3c22451f7f1059dacd69a
|
3 |
+
size 144077
|
PPO_spaceship/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO_spaceship/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd03631d3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd03631d440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd03631d4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd03631d560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd03631d5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd03631d680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd03631d710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd03631d7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd03631d830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd03631d8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd03631d950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd0363668d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 500800,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652015128.5886738,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb3zL1lfrE/oIICvyKxl75bscm9cScZvgAAAAAAAAAAnTy2PttlxD5B8cA8Be+ovGQ8lj02CIo8AAAAAAAAAAA6pVA+ejeNP5EdlT2dXQ08AOlDPiPjor0AAAAAAAAAADPTTLsPDAU/ps18vgO2bL74fgW9W9t+PAAAAAAAAAAAPVCEvih1jLzCDbY6bNCZOE2SAD4iH3O5AACAPwAAgD/tPjO+1CaNvPapBjrr+Cg4uTH3Pe5QL7kAAIA/AACAPxox4L339ac/s0oBv+II176++ry98hSRvQAAAAAAAAAAMI6MPg3VrD44Ea07D1j7vECIDj2Ivx49AAAAAAAAAAAaJuu9t/0oP3U5D743uTq+2YwtvPbiqToAAAAAAAAAAKaPqD7eWY49NUZnvGf4ar3/HyM+hBmwPQAAAAAAAAAA4iEnv+oqHr2OJvU5lwaXuKzPXL4SLBK5AAAAAAAAAACGVIK+pRyCPwq3qb7nJaq+qNDPvMnEFTcAAAAAAAAAACYisz59v68+GtoHvNLcmLw6xkY8bpsKvQAAAAAAAAAACEPNvvhlsT0O91e9gg7KvetBMLskFYk8AAAAAAAAAADAjx0/QEC5P6IaPD1mvvC8HxgTPIicHT0AAAAAAAAAAAA8x7v6ZXE/ZP43PNulD70Z+Tk9WGAsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0016000000000000458,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyFwZVBvVUMCUhpRSlIwBbJRLsYwBdJRHQJ4UEIkZ75V1fZQoaAZoCWgPQwiuLqcExCREQJSGlFKUaBVN6ANoFkdAniWiTINmUXV9lChoBmgJaA9DCFkw8UdRtHBAlIaUUpRoFU1tAWgWR0CeJgYplSTAdX2UKGgGaAloD0MId6BOefTBZkCUhpRSlGgVTRMCaBZHQJ4yD7Gecx11fZQoaAZoCWgPQwhMcOoDyQBiQJSGlFKUaBVN9gFoFkdAnjOHwLE1mHV9lChoBmgJaA9DCGIvFLCdUWJAlIaUUpRoFU2uAmgWR0CeRaG21D0EdX2UKGgGaAloD0MIRZxOslUZZkCUhpRSlGgVTRkDaBZHQJ5GhYW+GoJ1fZQoaAZoCWgPQwhWRE30+QZCQJSGlFKUaBVN6ANoFkdAnlYRwVCXyHV9lChoBmgJaA9DCAwHQrKAuWpAlIaUUpRoFU12AmgWR0CeWCZoPCl8dX2UKGgGaAloD0MIjjwQWSSEZECUhpRSlGgVTZ0BaBZHQJ5YmvovBad1fZQoaAZoCWgPQwj8471qZaZZQJSGlFKUaBVNuwJoFkdAnmYYZAIIGHV9lChoBmgJaA9DCDGW6ZcIz2ZAlIaUUpRoFU2JAmgWR0CeZ5toBaLXdX2UKGgGaAloD0MIceMW8/PpYkCUhpRSlGgVTUEDaBZHQJ54UwL3K0V1fZQoaAZoCWgPQwil+PiE7KRtQJSGlFKUaBVNsgFoFkdAnnnO76Hj63V9lChoBmgJaA9DCIF8CRWckGVAlIaUUpRoFU3nAmgWR0Cee+5t3wCsdX2UKGgGaAloD0MI3Zp0WyJnQsCUhpRSlGgVTUwBaBZHQJ6ETsfJV811fZQoaAZoCWgPQwhoCMcse/ptQJSGlFKUaBVNPQJoFkdAnoj0vwmVq3V9lChoBmgJaA9DCMUbmUd+1GRAlIaUUpRoFU0KA2gWR0CeirVVPva2dX2UKGgGaAloD0MI8UknEkyFK0CUhpRSlGgVTegDaBZHQJ6MaFev6j51fZQoaAZoCWgPQwjaG3xhskxgQJSGlFKUaBVNdgJoFkdAnpU1G9YfXHV9lChoBmgJaA9DCB0hA3l2wFfAlIaUUpRoFU3kAWgWR0CelxmNzbN9dX2UKGgGaAloD0MIea9amfBUUcCUhpRSlGgVS75oFkdAnpfaynk1dnV9lChoBmgJaA9DCL+5v3pcYmZAlIaUUpRoFU27AWgWR0Ceox/Ot4iYdX2UKGgGaAloD0MIoYDtYMTsRECUhpRSlGgVTegDaBZHQJ6jSS1Vo6F1fZQoaAZoCWgPQwhnKsQj8WVWwJSGlFKUaBVL+mgWR0CepSWI42jxdX2UKGgGaAloD0MIK2nFNxR8VsCUhpRSlGgVS89oFkdAnqW1yR0U5HV9lChoBmgJaA9DCHE486s5dFPAlIaUUpRoFUu0aBZHQJ6mfvLHMll1fZQoaAZoCWgPQwgktybdloJFwJSGlFKUaBVLi2gWR0Cepx/VAiV0dX2UKGgGaAloD0MIcHoX78frVsCUhpRSlGgVTb0BaBZHQJ6nLtWuHN51fZQoaAZoCWgPQwgIO8WqQRpAwJSGlFKUaBVL3WgWR0Cep8zhgmZ3dX2UKGgGaAloD0MIl4xjJHvBUMCUhpRSlGgVS6xoFkdAnrEi9AX2unV9lChoBmgJaA9DCCBfQgUH1mFAlIaUUpRoFU1UAmgWR0Ces3Q8wHqvdX2UKGgGaAloD0MIOpUMAFXXV8CUhpRSlGgVTZYBaBZHQJ61SEHt4Rp1fZQoaAZoCWgPQwgXvOgrSCdsQJSGlFKUaBVNwwFoFkdAnr0vT9bX6XV9lChoBmgJaA9DCHJTA83nQD3AlIaUUpRoFUvDaBZHQJ69t9/jKgZ1fZQoaAZoCWgPQwjrxyb5EY1HwJSGlFKUaBVNLwJoFkdAnr3D3AVO9HV9lChoBmgJaA9DCOoJSzyg+DnAlIaUUpRoFUuLaBZHQJ6+Ij2SMcZ1fZQoaAZoCWgPQwjKarqe6PBRwJSGlFKUaBVNpwJoFkdAnr5qE384xXV9lChoBmgJaA9DCC49murJOFTAlIaUUpRoFUvPaBZHQJ6/oH+qBEt1fZQoaAZoCWgPQwj3yycrhh5RwJSGlFKUaBVLeWgWR0Ceyp5NoJzDdX2UKGgGaAloD0MIaXHGMCcoAUCUhpRSlGgVTegDaBZHQJ7LaEBbOeJ1fZQoaAZoCWgPQwgYQWMmUZBUwJSGlFKUaBVNTwFoFkdAnsu1JDmbLHV9lChoBmgJaA9DCDoEjgQapkzAlIaUUpRoFUugaBZHQJ7MHD8+A3F1fZQoaAZoCWgPQwgziXrBp4E9wJSGlFKUaBVLumgWR0Ce1T7CiyprdX2UKGgGaAloD0MIrMd9q3U6SsCUhpRSlGgVS7VoFkdAntVzF6zE8HV9lChoBmgJaA9DCBAFM6Zgf1XAlIaUUpRoFU1PAWgWR0Ce1kcxj8UFdX2UKGgGaAloD0MIjj17LlPQUMCUhpRSlGgVTUwBaBZHQJ7iIFotcwB1fZQoaAZoCWgPQwi3skRnmfk8wJSGlFKUaBVNqgFoFkdAnuIxsdkrgHV9lChoBmgJaA9DCFN5O8JpX0XAlIaUUpRoFU1+AWgWR0Ce4uRoAXEZdX2UKGgGaAloD0MIfv/mxYl/UMCUhpRSlGgVS7JoFkdAnuSt1yNn5HV9lChoBmgJaA9DCODZHr3hnFbAlIaUUpRoFUuxaBZHQJ7oRxJd0JZ1fZQoaAZoCWgPQwinWaDdIeVVwJSGlFKUaBVNqAFoFkdAnvFfUKArhHV9lChoBmgJaA9DCBZu+UhK33BAlIaUUpRoFU2NAWgWR0Ce9AXnhbW3dX2UKGgGaAloD0MIyXcpdcl5U8CUhpRSlGgVTQoBaBZHQJ70ysYEW691fZQoaAZoCWgPQwgbnl4pyxRmQJSGlFKUaBVNjwJoFkdAnwARgy/KyXV9lChoBmgJaA9DCJPF/UemDWVAlIaUUpRoFU0uA2gWR0CfAQZyMkyDdX2UKGgGaAloD0MIJqyNsRM5VMCUhpRSlGgVTW0BaBZHQJ8D9DF6zE91fZQoaAZoCWgPQwhUHXIz3GxFwJSGlFKUaBVLe2gWR0CfEhmaYu01dX2UKGgGaAloD0MIs874vrjIT8CUhpRSlGgVTUIBaBZHQJ8TOyxA0Kt1fZQoaAZoCWgPQwgkgJvFi4tfQJSGlFKUaBVNFQNoFkdAnxUFolD4QHV9lChoBmgJaA9DCHPyIhPw50nAlIaUUpRoFU0RAWgWR0CfFb8DB/I9dX2UKGgGaAloD0MIrIvbaAA5YkCUhpRSlGgVTXoCaBZHQJ8jiI68xsV1fZQoaAZoCWgPQwhqLjcY6hJfwJSGlFKUaBVL52gWR0CfNuOVxCIDdX2UKGgGaAloD0MIKNGSx9MbaECUhpRSlGgVTWwDaBZHQJ8/wSQHRkV1fZQoaAZoCWgPQwhpVrYPeXJjQJSGlFKUaBVNpwFoFkdAn0NuF10T13V9lChoBmgJaA9DCCMRGsFGjmRAlIaUUpRoFU0qA2gWR0CfRbUlAu7IdX2UKGgGaAloD0MIeuOkMO+JbECUhpRSlGgVTaYCaBZHQJ9Il9XtBv91fZQoaAZoCWgPQwgSoKaWLeZpQJSGlFKUaBVNVAJoFkdAn0ji5d4VynV9lChoBmgJaA9DCJW6ZByjXGBAlIaUUpRoFU3KAmgWR0CfUjEC/47BdX2UKGgGaAloD0MIbHwm++cDV8CUhpRSlGgVS6ZoFkdAn1au6/ZdwHV9lChoBmgJaA9DCBAGnnsPnlLAlIaUUpRoFUuOaBZHQJ9Xj5sTFl11fZQoaAZoCWgPQwhgrkUL0GdTwJSGlFKUaBVNkQFoFkdAn1fkBCD28XV9lChoBmgJaA9DCJELzuDv103AlIaUUpRoFUuuaBZHQJ9jfxc3VCp1fZQoaAZoCWgPQwjAr5EkCFfAv5SGlFKUaBVN6ANoFkdAn2VoJ3PiUHV9lChoBmgJaA9DCOBKdmwEsGpAlIaUUpRoFU1PAmgWR0CfZcCdSVGDdX2UKGgGaAloD0MI7bsi+N+Ca0CUhpRSlGgVTb8BaBZHQJ9xi7L+xW11fZQoaAZoCWgPQwjElEiil1E7wJSGlFKUaBVLxmgWR0Cfdnzt1IRRdX2UKGgGaAloD0MInYGRlzVZOUCUhpRSlGgVTegDaBZHQJ9/lA+pwS91fZQoaAZoCWgPQwiS6GUUy01dwJSGlFKUaBVNkgJoFkdAn4B0LUkOZ3V9lChoBmgJaA9DCIDuy5ntRWVAlIaUUpRoFU1bA2gWR0CfgNf7rLQpdX2UKGgGaAloD0MIfzMxXQgIbECUhpRSlGgVTW8CaBZHQJ+A6iCaqjt1fZQoaAZoCWgPQwhmn8coz9VbwJSGlFKUaBVNOAFoFkdAn4F71dxAB3V9lChoBmgJaA9DCHjwEwfQUF7AlIaUUpRoFU2DA2gWR0Cfg/b0voNedX2UKGgGaAloD0MIcHuCxHYAZUCUhpRSlGgVTVUBaBZHQJ+PKbhFVkt1fZQoaAZoCWgPQwiEnWLVoDdjQJSGlFKUaBVNfQFoFkdAn5DtliBoVXV9lChoBmgJaA9DCHf3AN2XC1LAlIaUUpRoFUu5aBZHQJ+blDrqt5l1fZQoaAZoCWgPQwiv6xfshutQwJSGlFKUaBVL82gWR0Cfntf0VafSdX2UKGgGaAloD0MITdaoh+hXZECUhpRSlGgVTZABaBZHQJ+gQJdB0IV1fZQoaAZoCWgPQwhpqifzDxloQJSGlFKUaBVNrQJoFkdAn6HhV2iconV9lChoBmgJaA9DCGdGPxrOj2RAlIaUUpRoFU3EAWgWR0CfqzirksBidX2UKGgGaAloD0MIuRgD6zjmTcCUhpRSlGgVS6loFkdAn7sCYw7DEXV9lChoBmgJaA9DCNPcCmE1nVvAlIaUUpRoFU3DA2gWR0Cf5q6H0se5dX2UKGgGaAloD0MIcJaS5STMPsCUhpRSlGgVTegDaBZHQJ/rqOR1X/51fZQoaAZoCWgPQwic+GpHcSxgQJSGlFKUaBVN9wJoFkdAn/+E/KQq7XV9lChoBmgJaA9DCMhFtYioAmVAlIaUUpRoFU0hAmgWR0CgBzXbuc+adX2UKGgGaAloD0MIXwg57/8/McCUhpRSlGgVTegDaBZHQKAH6oaUA1h1fZQoaAZoCWgPQwhwPnWsUvrsv5SGlFKUaBVN6ANoFkdAoBEb9CNS63V9lChoBmgJaA9DCKmfNxUpRGJAlIaUUpRoFU0kA2gWR0CgEeyLIgeSdX2UKGgGaAloD0MI6GfqdYv3VkCUhpRSlGgVTbgDaBZHQKAUqmhufmN1fZQoaAZoCWgPQwhxrIvbaPAWwJSGlFKUaBVN6ANoFkdAoBTF92HLzXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3130,
|
79 |
+
"n_steps": 100,
|
80 |
+
"gamma": 0.98,
|
81 |
+
"gae_lambda": 0.5,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO_spaceship/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdc37fd23ca916bbfe8aae16fde030dcefb000d070a6e34eac473e1ebe82410f
|
3 |
+
size 84893
|
PPO_spaceship/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05435fe17227812fa607a582a75cbf7ee6b7848872a4ab159a0dea4a25ffba53
|
3 |
+
size 43201
|
PPO_spaceship/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_spaceship/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 28.21 +/- 142.32
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd03631d3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd03631d440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd03631d4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd03631d560>", "_build": "<function ActorCriticPolicy._build at 0x7fd03631d5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd03631d680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd03631d710>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd03631d7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd03631d830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd03631d8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd03631d950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd0363668d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 500800, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652015128.5886738, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb3zL1lfrE/oIICvyKxl75bscm9cScZvgAAAAAAAAAAnTy2PttlxD5B8cA8Be+ovGQ8lj02CIo8AAAAAAAAAAA6pVA+ejeNP5EdlT2dXQ08AOlDPiPjor0AAAAAAAAAADPTTLsPDAU/ps18vgO2bL74fgW9W9t+PAAAAAAAAAAAPVCEvih1jLzCDbY6bNCZOE2SAD4iH3O5AACAPwAAgD/tPjO+1CaNvPapBjrr+Cg4uTH3Pe5QL7kAAIA/AACAPxox4L339ac/s0oBv+II176++ry98hSRvQAAAAAAAAAAMI6MPg3VrD44Ea07D1j7vECIDj2Ivx49AAAAAAAAAAAaJuu9t/0oP3U5D743uTq+2YwtvPbiqToAAAAAAAAAAKaPqD7eWY49NUZnvGf4ar3/HyM+hBmwPQAAAAAAAAAA4iEnv+oqHr2OJvU5lwaXuKzPXL4SLBK5AAAAAAAAAACGVIK+pRyCPwq3qb7nJaq+qNDPvMnEFTcAAAAAAAAAACYisz59v68+GtoHvNLcmLw6xkY8bpsKvQAAAAAAAAAACEPNvvhlsT0O91e9gg7KvetBMLskFYk8AAAAAAAAAADAjx0/QEC5P6IaPD1mvvC8HxgTPIicHT0AAAAAAAAAAAA8x7v6ZXE/ZP43PNulD70Z+Tk9WGAsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0016000000000000458, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyFwZVBvVUMCUhpRSlIwBbJRLsYwBdJRHQJ4UEIkZ75V1fZQoaAZoCWgPQwiuLqcExCREQJSGlFKUaBVN6ANoFkdAniWiTINmUXV9lChoBmgJaA9DCFkw8UdRtHBAlIaUUpRoFU1tAWgWR0CeJgYplSTAdX2UKGgGaAloD0MId6BOefTBZkCUhpRSlGgVTRMCaBZHQJ4yD7Gecx11fZQoaAZoCWgPQwhMcOoDyQBiQJSGlFKUaBVN9gFoFkdAnjOHwLE1mHV9lChoBmgJaA9DCGIvFLCdUWJAlIaUUpRoFU2uAmgWR0CeRaG21D0EdX2UKGgGaAloD0MIRZxOslUZZkCUhpRSlGgVTRkDaBZHQJ5GhYW+GoJ1fZQoaAZoCWgPQwhWRE30+QZCQJSGlFKUaBVN6ANoFkdAnlYRwVCXyHV9lChoBmgJaA9DCAwHQrKAuWpAlIaUUpRoFU12AmgWR0CeWCZoPCl8dX2UKGgGaAloD0MIjjwQWSSEZECUhpRSlGgVTZ0BaBZHQJ5YmvovBad1fZQoaAZoCWgPQwj8471qZaZZQJSGlFKUaBVNuwJoFkdAnmYYZAIIGHV9lChoBmgJaA9DCDGW6ZcIz2ZAlIaUUpRoFU2JAmgWR0CeZ5toBaLXdX2UKGgGaAloD0MIceMW8/PpYkCUhpRSlGgVTUEDaBZHQJ54UwL3K0V1fZQoaAZoCWgPQwil+PiE7KRtQJSGlFKUaBVNsgFoFkdAnnnO76Hj63V9lChoBmgJaA9DCIF8CRWckGVAlIaUUpRoFU3nAmgWR0Cee+5t3wCsdX2UKGgGaAloD0MI3Zp0WyJnQsCUhpRSlGgVTUwBaBZHQJ6ETsfJV811fZQoaAZoCWgPQwhoCMcse/ptQJSGlFKUaBVNPQJoFkdAnoj0vwmVq3V9lChoBmgJaA9DCMUbmUd+1GRAlIaUUpRoFU0KA2gWR0CeirVVPva2dX2UKGgGaAloD0MI8UknEkyFK0CUhpRSlGgVTegDaBZHQJ6MaFev6j51fZQoaAZoCWgPQwjaG3xhskxgQJSGlFKUaBVNdgJoFkdAnpU1G9YfXHV9lChoBmgJaA9DCB0hA3l2wFfAlIaUUpRoFU3kAWgWR0CelxmNzbN9dX2UKGgGaAloD0MIea9amfBUUcCUhpRSlGgVS75oFkdAnpfaynk1dnV9lChoBmgJaA9DCL+5v3pcYmZAlIaUUpRoFU27AWgWR0Ceox/Ot4iYdX2UKGgGaAloD0MIoYDtYMTsRECUhpRSlGgVTegDaBZHQJ6jSS1Vo6F1fZQoaAZoCWgPQwhnKsQj8WVWwJSGlFKUaBVL+mgWR0CepSWI42jxdX2UKGgGaAloD0MIK2nFNxR8VsCUhpRSlGgVS89oFkdAnqW1yR0U5HV9lChoBmgJaA9DCHE486s5dFPAlIaUUpRoFUu0aBZHQJ6mfvLHMll1fZQoaAZoCWgPQwgktybdloJFwJSGlFKUaBVLi2gWR0Cepx/VAiV0dX2UKGgGaAloD0MIcHoX78frVsCUhpRSlGgVTb0BaBZHQJ6nLtWuHN51fZQoaAZoCWgPQwgIO8WqQRpAwJSGlFKUaBVL3WgWR0Cep8zhgmZ3dX2UKGgGaAloD0MIl4xjJHvBUMCUhpRSlGgVS6xoFkdAnrEi9AX2unV9lChoBmgJaA9DCCBfQgUH1mFAlIaUUpRoFU1UAmgWR0Ces3Q8wHqvdX2UKGgGaAloD0MIOpUMAFXXV8CUhpRSlGgVTZYBaBZHQJ61SEHt4Rp1fZQoaAZoCWgPQwgXvOgrSCdsQJSGlFKUaBVNwwFoFkdAnr0vT9bX6XV9lChoBmgJaA9DCHJTA83nQD3AlIaUUpRoFUvDaBZHQJ69t9/jKgZ1fZQoaAZoCWgPQwjrxyb5EY1HwJSGlFKUaBVNLwJoFkdAnr3D3AVO9HV9lChoBmgJaA9DCOoJSzyg+DnAlIaUUpRoFUuLaBZHQJ6+Ij2SMcZ1fZQoaAZoCWgPQwjKarqe6PBRwJSGlFKUaBVNpwJoFkdAnr5qE384xXV9lChoBmgJaA9DCC49murJOFTAlIaUUpRoFUvPaBZHQJ6/oH+qBEt1fZQoaAZoCWgPQwj3yycrhh5RwJSGlFKUaBVLeWgWR0Ceyp5NoJzDdX2UKGgGaAloD0MIaXHGMCcoAUCUhpRSlGgVTegDaBZHQJ7LaEBbOeJ1fZQoaAZoCWgPQwgYQWMmUZBUwJSGlFKUaBVNTwFoFkdAnsu1JDmbLHV9lChoBmgJaA9DCDoEjgQapkzAlIaUUpRoFUugaBZHQJ7MHD8+A3F1fZQoaAZoCWgPQwgziXrBp4E9wJSGlFKUaBVLumgWR0Ce1T7CiyprdX2UKGgGaAloD0MIrMd9q3U6SsCUhpRSlGgVS7VoFkdAntVzF6zE8HV9lChoBmgJaA9DCBAFM6Zgf1XAlIaUUpRoFU1PAWgWR0Ce1kcxj8UFdX2UKGgGaAloD0MIjj17LlPQUMCUhpRSlGgVTUwBaBZHQJ7iIFotcwB1fZQoaAZoCWgPQwi3skRnmfk8wJSGlFKUaBVNqgFoFkdAnuIxsdkrgHV9lChoBmgJaA9DCFN5O8JpX0XAlIaUUpRoFU1+AWgWR0Ce4uRoAXEZdX2UKGgGaAloD0MIfv/mxYl/UMCUhpRSlGgVS7JoFkdAnuSt1yNn5HV9lChoBmgJaA9DCODZHr3hnFbAlIaUUpRoFUuxaBZHQJ7oRxJd0JZ1fZQoaAZoCWgPQwinWaDdIeVVwJSGlFKUaBVNqAFoFkdAnvFfUKArhHV9lChoBmgJaA9DCBZu+UhK33BAlIaUUpRoFU2NAWgWR0Ce9AXnhbW3dX2UKGgGaAloD0MIyXcpdcl5U8CUhpRSlGgVTQoBaBZHQJ70ysYEW691fZQoaAZoCWgPQwgbnl4pyxRmQJSGlFKUaBVNjwJoFkdAnwARgy/KyXV9lChoBmgJaA9DCJPF/UemDWVAlIaUUpRoFU0uA2gWR0CfAQZyMkyDdX2UKGgGaAloD0MIJqyNsRM5VMCUhpRSlGgVTW0BaBZHQJ8D9DF6zE91fZQoaAZoCWgPQwhUHXIz3GxFwJSGlFKUaBVLe2gWR0CfEhmaYu01dX2UKGgGaAloD0MIs874vrjIT8CUhpRSlGgVTUIBaBZHQJ8TOyxA0Kt1fZQoaAZoCWgPQwgkgJvFi4tfQJSGlFKUaBVNFQNoFkdAnxUFolD4QHV9lChoBmgJaA9DCHPyIhPw50nAlIaUUpRoFU0RAWgWR0CfFb8DB/I9dX2UKGgGaAloD0MIrIvbaAA5YkCUhpRSlGgVTXoCaBZHQJ8jiI68xsV1fZQoaAZoCWgPQwhqLjcY6hJfwJSGlFKUaBVL52gWR0CfNuOVxCIDdX2UKGgGaAloD0MIKNGSx9MbaECUhpRSlGgVTWwDaBZHQJ8/wSQHRkV1fZQoaAZoCWgPQwhpVrYPeXJjQJSGlFKUaBVNpwFoFkdAn0NuF10T13V9lChoBmgJaA9DCCMRGsFGjmRAlIaUUpRoFU0qA2gWR0CfRbUlAu7IdX2UKGgGaAloD0MIeuOkMO+JbECUhpRSlGgVTaYCaBZHQJ9Il9XtBv91fZQoaAZoCWgPQwgSoKaWLeZpQJSGlFKUaBVNVAJoFkdAn0ji5d4VynV9lChoBmgJaA9DCJW6ZByjXGBAlIaUUpRoFU3KAmgWR0CfUjEC/47BdX2UKGgGaAloD0MIbHwm++cDV8CUhpRSlGgVS6ZoFkdAn1au6/ZdwHV9lChoBmgJaA9DCBAGnnsPnlLAlIaUUpRoFUuOaBZHQJ9Xj5sTFl11fZQoaAZoCWgPQwhgrkUL0GdTwJSGlFKUaBVNkQFoFkdAn1fkBCD28XV9lChoBmgJaA9DCJELzuDv103AlIaUUpRoFUuuaBZHQJ9jfxc3VCp1fZQoaAZoCWgPQwjAr5EkCFfAv5SGlFKUaBVN6ANoFkdAn2VoJ3PiUHV9lChoBmgJaA9DCOBKdmwEsGpAlIaUUpRoFU1PAmgWR0CfZcCdSVGDdX2UKGgGaAloD0MI7bsi+N+Ca0CUhpRSlGgVTb8BaBZHQJ9xi7L+xW11fZQoaAZoCWgPQwjElEiil1E7wJSGlFKUaBVLxmgWR0Cfdnzt1IRRdX2UKGgGaAloD0MInYGRlzVZOUCUhpRSlGgVTegDaBZHQJ9/lA+pwS91fZQoaAZoCWgPQwiS6GUUy01dwJSGlFKUaBVNkgJoFkdAn4B0LUkOZ3V9lChoBmgJaA9DCIDuy5ntRWVAlIaUUpRoFU1bA2gWR0CfgNf7rLQpdX2UKGgGaAloD0MIfzMxXQgIbECUhpRSlGgVTW8CaBZHQJ+A6iCaqjt1fZQoaAZoCWgPQwhmn8coz9VbwJSGlFKUaBVNOAFoFkdAn4F71dxAB3V9lChoBmgJaA9DCHjwEwfQUF7AlIaUUpRoFU2DA2gWR0Cfg/b0voNedX2UKGgGaAloD0MIcHuCxHYAZUCUhpRSlGgVTVUBaBZHQJ+PKbhFVkt1fZQoaAZoCWgPQwiEnWLVoDdjQJSGlFKUaBVNfQFoFkdAn5DtliBoVXV9lChoBmgJaA9DCHf3AN2XC1LAlIaUUpRoFUu5aBZHQJ+blDrqt5l1fZQoaAZoCWgPQwiv6xfshutQwJSGlFKUaBVL82gWR0Cfntf0VafSdX2UKGgGaAloD0MITdaoh+hXZECUhpRSlGgVTZABaBZHQJ+gQJdB0IV1fZQoaAZoCWgPQwhpqifzDxloQJSGlFKUaBVNrQJoFkdAn6HhV2iconV9lChoBmgJaA9DCGdGPxrOj2RAlIaUUpRoFU3EAWgWR0CfqzirksBidX2UKGgGaAloD0MIuRgD6zjmTcCUhpRSlGgVS6loFkdAn7sCYw7DEXV9lChoBmgJaA9DCNPcCmE1nVvAlIaUUpRoFU3DA2gWR0Cf5q6H0se5dX2UKGgGaAloD0MIcJaS5STMPsCUhpRSlGgVTegDaBZHQJ/rqOR1X/51fZQoaAZoCWgPQwic+GpHcSxgQJSGlFKUaBVN9wJoFkdAn/+E/KQq7XV9lChoBmgJaA9DCMhFtYioAmVAlIaUUpRoFU0hAmgWR0CgBzXbuc+adX2UKGgGaAloD0MIXwg57/8/McCUhpRSlGgVTegDaBZHQKAH6oaUA1h1fZQoaAZoCWgPQwhwPnWsUvrsv5SGlFKUaBVN6ANoFkdAoBEb9CNS63V9lChoBmgJaA9DCKmfNxUpRGJAlIaUUpRoFU0kA2gWR0CgEeyLIgeSdX2UKGgGaAloD0MI6GfqdYv3VkCUhpRSlGgVTbgDaBZHQKAUqmhufmN1fZQoaAZoCWgPQwhxrIvbaPAWwJSGlFKUaBVN6ANoFkdAoBTF92HLzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3130, "n_steps": 100, "gamma": 0.98, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96aaa8a6f44becbbae6df5856c4ae630b80f13c47272395e428870a10c48539b
|
3 |
+
size 226101
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 28.211289940642075, "std_reward": 142.31556230236407, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T13:33:02.977292"}
|