ppo-LunarLander-v2 / config.json
GerardCB's picture
Upload first version of PPO LunarLander-v2 trained agent
ae9ab95 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd0a01960e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd0a0196170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd0a0196200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd0a0196290>", "_build": "<function ActorCriticPolicy._build at 0x7dd0a0196320>", "forward": "<function ActorCriticPolicy.forward at 0x7dd0a01963b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd0a0196440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd0a01964d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd0a0196560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd0a01965f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd0a0196680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd0a0196710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd0a0334540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2193776, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721311470380769211, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG37Xj47kC8/ejSEvhBY7r6BGeA9OmdAvgAAAAAAAAAAAPbPvCYasT+ejaW9PA/DvlZbkr2gaeO9AAAAAAAAAADmBgg9Y62nP2K7az38rw2/9GGZPZ16Vj0AAAAAAAAAAGsUlr6N4Rg/lEypPatq0r7LUrG+3xEyPgAAAAAAAAAAZuW+PBsugj1msue8cmltvvzNjDzzaU29AAAAAAAAAABmO/u8e+6outLrArRXCK4vy1SNOZUssDMAAIA/AACAP5pXGz13fZ8/lSiSPuvtHL8P8IA8bimKPQAAAAAAAAAAMxawPM1vIz7ozYK9xDtZvnlfHL3YsqK9AAAAAAAAAABm7n27Y0cXPcqJiDzVIxa+LkMOPPBdnzwAAAAAAAAAAGZ8Sz1AxZg/HMevPWLDF7+xuKU9ZEUBvQAAAAAAAAAAOoWTPi21Sj+gOAk+O2LivnLy8j7CUCE9AAAAAAAAAABgDIO+9GiHP2JUt75MXiK/WLDJvgw4h7wAAAAAAAAAAIBmPD1Xtgk/wG3UvXqQub5e7Li7IKkavAAAAAAAAAAAZlQwPFiVFz/7LjC96R2ovq7/F72++6S8AAAAAAAAAABTwDU+0BzVPiCp3L7i0MO+8WGwvalkML4AAAAAAAAAAFaiUb5arYs/RB/Avg7IEL9HvrC+Mv7UvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7820928, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCM2mxdIG2MAWyUS+uMAXSUR0Cg3ckjgQ6IdX2UKGgGR0BvxKamXPZ7aAdL9GgIR0Cg3ezjNpuddX2UKGgGR0Buoulj3EhraAdL72gIR0Cg3edgfEGadX2UKGgGR0Bvjah11W8zaAdL4mgIR0Cg3ieoDPnkdX2UKGgGR0BxmqNDMNc4aAdL2GgIR0Cg3n4RNATqdX2UKGgGR0Bvi4cT8HfNaAdNCAFoCEdAoN6B0nw5N3V9lChoBkdAb68QiA2AG2gHTQUBaAhHQKDezoGIKtx1fZQoaAZHQHOcKcmShaloB0v3aAhHQKDe/myxA0N1fZQoaAZHQHFinaBZpztoB0v4aAhHQKDfpfzBhx51fZQoaAZHQHE3mbkOqedoB00CAWgIR0Cg38KhlDnedX2UKGgGR0ByybU7Sy+paAdNBQFoCEdAoN/ncrRSg3V9lChoBkdAcQJtga3qiWgHS+BoCEdAoN/1P8AJcHV9lChoBkdAcnmH446wMmgHS8poCEdAoOA2N5t3wHV9lChoBkdAclxSWqtHQWgHS/FoCEdAoOBTSmZVn3V9lChoBkdAcKpPVd5Y5mgHS+ZoCEdAoOBci+tbLXV9lChoBkdAcFBTiKiwjmgHS+doCEdAoOBrWd3B6HV9lChoBkdAcAeJdjXnQ2gHS+hoCEdAoOBvYDklu3V9lChoBkdAcqsU+cH4XWgHS+5oCEdAoOCgnH/953V9lChoBkdAcy9re67NCGgHTQcBaAhHQKDgvGp++dt1fZQoaAZHQG7k6nzg/C9oB0vvaAhHQKDg5wOOKfp1fZQoaAZHQHMJTYdyT6loB0vQaAhHQKDg7FGXokl1fZQoaAZHQG6iWOhkAghoB0voaAhHQKDhKC7K7qZ1fZQoaAZHQHBeXFUADJVoB0vnaAhHQKDhnjwQUYd1fZQoaAZHQHCRkQbuMMtoB00FAWgIR0Cg4cKLsKLLdX2UKGgGR0BvdooVmBe5aAdL2GgIR0Cg4ie7tiQUdX2UKGgGR0BydtYT0xubaAdL/GgIR0Cg4n2HtWuHdX2UKGgGR0BwUIPCl7+laAdL72gIR0Cg4pbMX7+DdX2UKGgGR0BxY/HmzSkTaAdL8GgIR0Cg4qgmiQDFdX2UKGgGR0BzO6uoxYaHaAdL5GgIR0Cg4sW3Sa3JdX2UKGgGR0BwUw5myxA0aAdL22gIR0Cg4tyqU/wBdX2UKGgGR0BxPblijL0SaAdL9mgIR0Cg4xVwxWT5dX2UKGgGR0BzjFGViWmhaAdL+GgIR0Cg4yK9oN/fdX2UKGgGR0ByO4z7/GVBaAdL2WgIR0Cg4yf9YOlPdX2UKGgGR0BwyG9f1HvuaAdL62gIR0Cg4z2HDaXbdX2UKGgGR0Bw3agUUO/daAdNCQFoCEdAoONgXXRPXXV9lChoBkdAb7AVyFPBSGgHS+VoCEdAoON4TXarWHV9lChoBkdAcUK+i8FpwmgHS+poCEdAoOPB+rlvInV9lChoBkdAce6biqABk2gHTQkBaAhHQKDj0GJvYOF1fZQoaAZHQHFwn13+uNhoB0viaAhHQKDuLO2y9mJ1fZQoaAZHQHCI+JHiFTNoB00HAWgIR0Cg7ncYIjW1dX2UKGgGR0Bv/hZyMkyDaAdL9mgIR0Cg7tjwx33YdX2UKGgGR0Byhvv8ZUDMaAdL8WgIR0Cg7ySTpxFRdX2UKGgGR0Byg2uX/o7naAdL9mgIR0Cg700q6OHWdX2UKGgGR0BxWO0hNdqtaAdL/mgIR0Cg75b+DOC5dX2UKGgGR0BzyfMSsbNsaAdLyWgIR0Cg75za9K28dX2UKGgGR0BzRV+b3Gn5aAdNCwFoCEdAoO+i5uqFRHV9lChoBkdAcPFB0p3HJmgHS/xoCEdAoO+oxrSE13V9lChoBkdAcx+/nW8RMGgHS+toCEdAoO++PeYUnHV9lChoBkdAbjrwS8J2MmgHS+FoCEdAoO+8b5uZTnV9lChoBkdAbwMNvwVj7WgHS+BoCEdAoO/2i5/b03V9lChoBkdAcVYQq7ROUWgHTQEBaAhHQKDv/fWtlqd1fZQoaAZHQG7Ql9Brvb5oB00MAWgIR0Cg8Asxfv4NdX2UKGgGR0BwC/0Zm7J5aAdL4GgIR0Cg8Ejopx3ndX2UKGgGR0BzJ9deIEbHaAdL/WgIR0Cg8IOVX3g2dX2UKGgGR0BxlBtwaR6oaAdNBQFoCEdAoPEk+3YthHV9lChoBkdAcFI1VHWjGmgHS/9oCEdAoPFbvkRzzXV9lChoBkdAcUC/rjYI0WgHS+NoCEdAoPFn7el9B3V9lChoBkdAcq/eu3c582gHTQABaAhHQKDyBd2PkrB1fZQoaAZHQHOKEU0vXbxoB0v2aAhHQKDyDNEgGKR1fZQoaAZHQG+/oNmUW2xoB0vjaAhHQKDyKXvYvnN1fZQoaAZHQG06Kx9oexRoB0vuaAhHQKDyRh4MWoF1fZQoaAZHQHHngHmig01oB0v0aAhHQKDyTeY2Kl51fZQoaAZHQHGxK/h2nsNoB0v1aAhHQKDyVY0VJtl1fZQoaAZHQHIpBqsU7CBoB0vqaAhHQKDyVJEpiJB1fZQoaAZHQHEgTqKP4mFoB0v2aAhHQKDyd0oScsl1fZQoaAZHQHL74UN8VpNoB0vdaAhHQKDycz+m3vx1fZQoaAZHQG+TdS2phndoB0voaAhHQKDymySmqHZ1fZQoaAZHQHO32yon8bdoB0v4aAhHQKDyrm6oVEd1fZQoaAZHQHERS5d4VypoB0v0aAhHQKDy9nbqQil1fZQoaAZHQHFb6GL1mJ5oB0vvaAhHQKDzLHeaa1F1fZQoaAZHQG/fsRpUPxxoB0vqaAhHQKDzuXyAhB91fZQoaAZHQHNwufh/Aj9oB0vaaAhHQKDzwAtnPE91fZQoaAZHQHKR1bVz6rNoB0vxaAhHQKD0EOfdykt1fZQoaAZHQHGVIhyKekJoB0vSaAhHQKD0dQhwEQp1fZQoaAZHQHGR1fAsTWZoB0vfaAhHQKD0gmBOHnF1fZQoaAZHQG+eD/+85CFoB0v4aAhHQKD0zcXWOIZ1fZQoaAZHQHKma+zt1IRoB0vZaAhHQKD041baAWl1fZQoaAZHQHDECMglnh9oB0vraAhHQKD05mLcbit1fZQoaAZHQHH3/o/zJ6poB0v7aAhHQKD1KLPUrkN1fZQoaAZHQHJsQfIS13NoB00OAWgIR0Cg9V45T6zmdX2UKGgGR0Byq1HZsbeeaAdNAQFoCEdAoPVfqLS/kHV9lChoBkdAckyWLxZuAWgHTQEBaAhHQKD1jAh0Qsh1fZQoaAZHQHC4naJyhi9oB0v+aAhHQKD1nB7eEZl1fZQoaAZHQHGAbv5P/JhoB0vfaAhHQKD1zf5ULlV1fZQoaAZHQHHGUWIoE0VoB0v7aAhHQKD16IGhVVB1fZQoaAZHQG6a7CrLhaVoB0vxaAhHQKD2qdfb9Ih1fZQoaAZHQHI/5ZKWcBloB0vhaAhHQKD2z+LFXJZ1fZQoaAZHQHHV2Ebo8p1oB0v/aAhHQKD20ygwoLJ1fZQoaAZHQHPWC2hIvrZoB0vuaAhHQKD3b6yB06p1fZQoaAZHQHKa3arWAgBoB0vyaAhHQKD30rsjVx11fZQoaAZHQHH79UGVzIVoB00LAWgIR0Cg983izcASdX2UKGgGR0ByWdUIcBEKaAdL3GgIR0Cg9+vitJWedX2UKGgGR0BwnQQcxTKlaAdL+2gIR0Cg+Asw1zhhdX2UKGgGR0BwX+RISUTtaAdNBgFoCEdAoPgxm29cr3V9lChoBkdAci7+I/JNkGgHTfIBaAhHQKD4ROsT37F1fZQoaAZHQHC9eu7pV0doB0vpaAhHQKD4TXLeQ+51fZQoaAZHQHGXw+MZP2xoB0vdaAhHQKD4WBuGbkR1fZQoaAZHQHFTVi4J/odoB0vcaAhHQKD4Y5XEIgN1fZQoaAZHQHF3W5tm+TNoB00BAWgIR0Cg+IsfaHsUdX2UKGgGR0ByjKQU5+6RaAdL52gIR0Cg+KvIOpbVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 532, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}