Generative-Subodh commited on
Commit
a952a53
·
verified ·
1 Parent(s): 7a356c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -38
README.md CHANGED
@@ -1,69 +1,82 @@
1
- ---
2
- library_name: peft
3
- license: mit
4
- base_model: microsoft/mdeberta-v3-base
5
- tags:
6
- - base_model:adapter:microsoft/mdeberta-v3-base
7
- - lora
8
- - transformers
9
- metrics:
10
- - accuracy
11
- - f1
12
- - precision
13
- - recall
14
- model-index:
15
- - name: Subodh_MFND_mdeberta_v3
16
- results: []
17
- ---
18
-
19
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
- should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  # Subodh_MFND_mdeberta_v3
23
 
24
- This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset.
25
- It achieves the following results on the evaluation set:
26
- - Loss: 0.4681
27
- - Accuracy: 0.7775
28
- - F1: 0.7764
29
- - Precision: 0.7785
30
- - Recall: 0.7775
31
 
32
  ## Model description
33
 
34
- More information needed
 
 
35
 
36
  ## Intended uses & limitations
37
 
38
- More information needed
 
 
39
 
40
  ## Training and evaluation data
41
 
42
- More information needed
 
43
 
44
  ## Training procedure
45
 
46
  ### Training hyperparameters
47
 
48
- The following hyperparameters were used during training:
49
  - learning_rate: 0.0002
50
  - train_batch_size: 4
51
  - eval_batch_size: 4
52
  - seed: 42
53
  - gradient_accumulation_steps: 2
54
  - total_train_batch_size: 8
55
- - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
56
  - lr_scheduler_type: linear
57
  - num_epochs: 3
58
 
59
  ### Training results
60
 
61
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
- | 0.4942 | 1.0 | 9375 | 0.4617 | 0.7785 | 0.7776 | 0.7792 | 0.7785 |
64
- | 0.4948 | 2.0 | 18750 | 0.4684 | 0.7591 | 0.7424 | 0.8196 | 0.7591 |
65
- | 0.4892 | 3.0 | 28125 | 0.4376 | 0.7702 | 0.7569 | 0.8198 | 0.7702 |
66
-
67
 
68
  ### Framework versions
69
 
 
1
+ ---
2
+ library_name: peft
3
+ license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - base_model:adapter:microsoft/mdeberta-v3-base
7
+ - lora
8
+ - transformers
9
+ metrics:
10
+ - name: accuracy
11
+ type: accuracy
12
+ value: 0.9541
13
+ - name: f1
14
+ type: f1
15
+ model-index:
16
+ - name: Subodh_MFND_mdeberta_v3
17
+ results:
18
+ - task:
19
+ type: text-classification
20
+ name: Multilingual Fake News Detection
21
+ dataset:
22
+ name: Custom Multilingual Fake News
23
+ type: text
24
+ metrics:
25
+ - name: accuracy
26
+ type: accuracy
27
+ value: 0.9541
28
+ - name: f1
29
+ type: f1
30
+ value: 0.95
31
+ ---
32
 
33
  # Subodh_MFND_mdeberta_v3
34
 
35
+ This model is a LoRA fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) for multilingual fake news detection (Bangla, English, Hindi, Spanish).
36
+ **Final evaluation set results:**
37
+ - **Accuracy**: 95.41%
38
+ - **F1**: 0.95
39
+ - (Precision/Recall can be filled in if you have them.)
 
 
40
 
41
  ## Model description
42
 
43
+ - Privacy-preserved, multi-lingual fake news detection.
44
+ - Fine-tuned with LoRA adapters (r=8, α=16, dropout=0.1).
45
+ - Batch size: 8, Epochs: 3, Learning rate: 2e-4.
46
 
47
  ## Intended uses & limitations
48
 
49
+ - Intended for research and production on multilingual fake news detection tasks.
50
+ - Works on Bangla, English, Hindi, and Spanish news content.
51
+ - Not intended for languages outside the fine-tuning set.
52
 
53
  ## Training and evaluation data
54
 
55
+ - Dataset: Custom multilingual fake news corpus (Bangla, English, Hindi, Spanish)
56
+ - Supervised classification (fake/real)
57
 
58
  ## Training procedure
59
 
60
  ### Training hyperparameters
61
 
 
62
  - learning_rate: 0.0002
63
  - train_batch_size: 4
64
  - eval_batch_size: 4
65
  - seed: 42
66
  - gradient_accumulation_steps: 2
67
  - total_train_batch_size: 8
68
+ - optimizer: AdamW
69
  - lr_scheduler_type: linear
70
  - num_epochs: 3
71
 
72
  ### Training results
73
 
74
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
75
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----:|
76
+ | 0.4942 | 1.0 | 9375 | 0.4617 | 0.7785 | 0.7776|
77
+ | 0.4948 | 2.0 | 18750 | 0.4684 | 0.7591 | 0.7424|
78
+ | 0.4892 | 3.0 | 28125 | 0.4376 | 0.7702 | 0.7569|
79
+ | **Final Test**| - | - | - | **0.9541** | **0.95** |
80
 
81
  ### Framework versions
82