Update README.md
Browse files
README.md
CHANGED
|
@@ -1,69 +1,82 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: peft
|
| 3 |
-
license: mit
|
| 4 |
-
base_model: microsoft/mdeberta-v3-base
|
| 5 |
-
tags:
|
| 6 |
-
- base_model:adapter:microsoft/mdeberta-v3-base
|
| 7 |
-
- lora
|
| 8 |
-
- transformers
|
| 9 |
-
metrics:
|
| 10 |
-
- accuracy
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
-
|
| 14 |
-
|
| 15 |
-
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Subodh_MFND_mdeberta_v3
|
| 23 |
|
| 24 |
-
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base)
|
| 25 |
-
|
| 26 |
-
-
|
| 27 |
-
-
|
| 28 |
-
-
|
| 29 |
-
- Precision: 0.7785
|
| 30 |
-
- Recall: 0.7775
|
| 31 |
|
| 32 |
## Model description
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
|
| 36 |
## Intended uses & limitations
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
## Training and evaluation data
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
## Training procedure
|
| 45 |
|
| 46 |
### Training hyperparameters
|
| 47 |
|
| 48 |
-
The following hyperparameters were used during training:
|
| 49 |
- learning_rate: 0.0002
|
| 50 |
- train_batch_size: 4
|
| 51 |
- eval_batch_size: 4
|
| 52 |
- seed: 42
|
| 53 |
- gradient_accumulation_steps: 2
|
| 54 |
- total_train_batch_size: 8
|
| 55 |
-
- optimizer:
|
| 56 |
- lr_scheduler_type: linear
|
| 57 |
- num_epochs: 3
|
| 58 |
|
| 59 |
### Training results
|
| 60 |
|
| 61 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1
|
| 62 |
-
|
| 63 |
-
| 0.4942 | 1.0 | 9375 | 0.4617 | 0.7785 | 0.7776
|
| 64 |
-
| 0.4948 | 2.0 | 18750 | 0.4684 | 0.7591 | 0.7424
|
| 65 |
-
| 0.4892 | 3.0 | 28125 | 0.4376 | 0.7702 | 0.7569
|
| 66 |
-
|
| 67 |
|
| 68 |
### Framework versions
|
| 69 |
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
license: mit
|
| 4 |
+
base_model: microsoft/mdeberta-v3-base
|
| 5 |
+
tags:
|
| 6 |
+
- base_model:adapter:microsoft/mdeberta-v3-base
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
metrics:
|
| 10 |
+
- name: accuracy
|
| 11 |
+
type: accuracy
|
| 12 |
+
value: 0.9541
|
| 13 |
+
- name: f1
|
| 14 |
+
type: f1
|
| 15 |
+
model-index:
|
| 16 |
+
- name: Subodh_MFND_mdeberta_v3
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: text-classification
|
| 20 |
+
name: Multilingual Fake News Detection
|
| 21 |
+
dataset:
|
| 22 |
+
name: Custom Multilingual Fake News
|
| 23 |
+
type: text
|
| 24 |
+
metrics:
|
| 25 |
+
- name: accuracy
|
| 26 |
+
type: accuracy
|
| 27 |
+
value: 0.9541
|
| 28 |
+
- name: f1
|
| 29 |
+
type: f1
|
| 30 |
+
value: 0.95
|
| 31 |
+
---
|
| 32 |
|
| 33 |
# Subodh_MFND_mdeberta_v3
|
| 34 |
|
| 35 |
+
This model is a LoRA fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) for multilingual fake news detection (Bangla, English, Hindi, Spanish).
|
| 36 |
+
**Final evaluation set results:**
|
| 37 |
+
- **Accuracy**: 95.41%
|
| 38 |
+
- **F1**: 0.95
|
| 39 |
+
- (Precision/Recall can be filled in if you have them.)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
## Model description
|
| 42 |
|
| 43 |
+
- Privacy-preserved, multi-lingual fake news detection.
|
| 44 |
+
- Fine-tuned with LoRA adapters (r=8, α=16, dropout=0.1).
|
| 45 |
+
- Batch size: 8, Epochs: 3, Learning rate: 2e-4.
|
| 46 |
|
| 47 |
## Intended uses & limitations
|
| 48 |
|
| 49 |
+
- Intended for research and production on multilingual fake news detection tasks.
|
| 50 |
+
- Works on Bangla, English, Hindi, and Spanish news content.
|
| 51 |
+
- Not intended for languages outside the fine-tuning set.
|
| 52 |
|
| 53 |
## Training and evaluation data
|
| 54 |
|
| 55 |
+
- Dataset: Custom multilingual fake news corpus (Bangla, English, Hindi, Spanish)
|
| 56 |
+
- Supervised classification (fake/real)
|
| 57 |
|
| 58 |
## Training procedure
|
| 59 |
|
| 60 |
### Training hyperparameters
|
| 61 |
|
|
|
|
| 62 |
- learning_rate: 0.0002
|
| 63 |
- train_batch_size: 4
|
| 64 |
- eval_batch_size: 4
|
| 65 |
- seed: 42
|
| 66 |
- gradient_accumulation_steps: 2
|
| 67 |
- total_train_batch_size: 8
|
| 68 |
+
- optimizer: AdamW
|
| 69 |
- lr_scheduler_type: linear
|
| 70 |
- num_epochs: 3
|
| 71 |
|
| 72 |
### Training results
|
| 73 |
|
| 74 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
| 75 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----:|
|
| 76 |
+
| 0.4942 | 1.0 | 9375 | 0.4617 | 0.7785 | 0.7776|
|
| 77 |
+
| 0.4948 | 2.0 | 18750 | 0.4684 | 0.7591 | 0.7424|
|
| 78 |
+
| 0.4892 | 3.0 | 28125 | 0.4376 | 0.7702 | 0.7569|
|
| 79 |
+
| **Final Test**| - | - | - | **0.9541** | **0.95** |
|
| 80 |
|
| 81 |
### Framework versions
|
| 82 |
|