Improve model card: Add pipeline tag, library, project page, and sample usage
Browse filesThis PR enhances the model card by:
- Adding `pipeline_tag: text-generation` for better discoverability on the Hugging Face Hub (e.g., at https://huggingface.co/models?pipeline_tag=text-generation).
- Adding `library_name: transformers` to correctly identify its compatibility with the Transformers library and enable the automated usage widget.
- Including a link to the project page: [Hugging Face Collection](https://huggingface.co/collections/Gen-Verse/trado-series-68beb6cd6a26c27cde9fe3af).
- Incorporating a sample usage code snippet from the GitHub README to guide users on how to interact with the model.
README.md
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
# Introduction to TraDo
|
| 6 |
|
| 7 |
-
[Paper](https://arxiv.org/abs/2509.06949) | [Code](https://github.com/Gen-Verse/dLLM-RL)
|
| 8 |
|
| 9 |
We introduce **TraDo**, SOTA diffusion language model, trained with **TraceRL**.
|
| 10 |
|
|
@@ -22,8 +24,44 @@ We introduce **TraDo**, SOTA diffusion language model, trained with **TraceRL**.
|
|
| 22 |
<img src="https://github.com/yinjjiew/Data/raw/main/dllm-rl/maintable.png" width="100%"/>
|
| 23 |
</p>
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Citation
|
| 29 |
|
|
@@ -34,6 +72,4 @@ We introduce **TraDo**, SOTA diffusion language model, trained with **TraceRL**.
|
|
| 34 |
journal={arXiv preprint arXiv:2509.06949},
|
| 35 |
year={2025}
|
| 36 |
}
|
| 37 |
-
```
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
pipeline_tag: text-generation
|
| 4 |
+
library_name: transformers
|
| 5 |
---
|
| 6 |
|
| 7 |
# Introduction to TraDo
|
| 8 |
|
| 9 |
+
[Paper](https://arxiv.org/abs/2509.06949) | [Code](https://github.com/Gen-Verse/dLLM-RL) | [Project Page](https://huggingface.co/collections/Gen-Verse/trado-series-68beb6cd6a26c27cde9fe3af)
|
| 10 |
|
| 11 |
We introduce **TraDo**, SOTA diffusion language model, trained with **TraceRL**.
|
| 12 |
|
|
|
|
| 24 |
<img src="https://github.com/yinjjiew/Data/raw/main/dllm-rl/maintable.png" width="100%"/>
|
| 25 |
</p>
|
| 26 |
|
| 27 |
+
## Usage
|
| 28 |
+
|
| 29 |
+
You can download and try our model:
|
| 30 |
+
```python
|
| 31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 32 |
+
from generate import block_diffusion_generate
|
| 33 |
+
|
| 34 |
+
model_name = "Gen-Verse/TraDo-8B-Instruct"
|
| 35 |
+
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_name, trust_remote_code=True, torch_dtype="float16", device_map="cuda"
|
| 38 |
+
)
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 40 |
+
|
| 41 |
+
prompt = "What's the solution of x^2 - 2x + 1 = 0\
|
| 42 |
+
Please reason step by step, and put your final answer within \\\\boxed{}.\
|
| 43 |
+
"
|
| 44 |
+
messages = [{"role": "user", "content": prompt}]
|
| 45 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 46 |
+
|
| 47 |
+
tokens = tokenizer.batch_encode_plus([text], return_tensors='pt', padding=True, truncation=True, max_length=200)
|
| 48 |
+
tokens = {k: v.to(model.device) for k, v in tokens.items()}
|
| 49 |
+
|
| 50 |
+
output_ids = block_diffusion_generate(
|
| 51 |
+
model,
|
| 52 |
+
prompt=tokens,
|
| 53 |
+
mask_id=151669,
|
| 54 |
+
gen_length=200,
|
| 55 |
+
block_length=4, denoising_steps=4,
|
| 56 |
+
temperature=1.0, top_k=0, top_p=1.0,
|
| 57 |
+
remasking_strategy="low_confidence_dynamic",
|
| 58 |
+
confidence_threshold=0.9
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=False)
|
| 62 |
+
cleaned_text = output_text.replace('<|MASK|>', '').replace('<|endoftext|>', '')
|
| 63 |
+
print(cleaned_text)
|
| 64 |
+
```
|
| 65 |
|
| 66 |
# Citation
|
| 67 |
|
|
|
|
| 72 |
journal={arXiv preprint arXiv:2509.06949},
|
| 73 |
year={2025}
|
| 74 |
}
|
| 75 |
+
```
|
|
|
|
|
|