GauthamB commited on
Commit
2749f0b
·
1 Parent(s): bc7895d

train RL Agent for Lunar Lander environment

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.75 +/- 17.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa37da7ddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa37da7de50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa37da7dee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa37da7df70>", "_build": "<function ActorCriticPolicy._build at 0x7fa37da81040>", "forward": "<function ActorCriticPolicy.forward at 0x7fa37da810d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa37da81160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa37da811f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa37da81280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa37da81310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa37da813a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa37da79570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671546349963434611, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqLIj1NbgU+3/8TPPZnVb4LVjg9dUyvvAAAAAAAAAAApkPZva7Vibo/hze7vHYXtkWrSLsKp1Q6AACAPwAAAAAzdn09tMZ4PldNNb4UYGu+IhejvVvNzDwAAAAAAAAAAPMjhr0p2Fa6UlQqOBbJlTOkPPC5lplFtwAAgD8AAIA/ACOHvagnmj2jfWQ9mlYvvk5gxD3Cn7+8AAAAAAAAAAAau4a9mYxDPwDENb0Jg7m+/TsYvb3gF70AAAAAAAAAAGbK1DtyaBQ/PqDQvPLYkr6f8gc9DrcWPQAAAAAAAAAA2sClPXlSKD+gb/29EAWZvsKpqD06b4a5AAAAAAAAAACmySi+OKncPUzfMT7hgm6+QhyjOmqPnrkAAAAAAAAAAGbIKrxc9ym6Sqw2tl64i7Ac52q7FVJlNQAAgD8AAIA/Zo0PvXS1tj3yXlG+2R+OvsVaAb7SPxc9AAAAAAAAAABmDtW8SLeQuvpYQTp3r8o1QEOrOTVOYLkAAIA/AACAP6YK070fDc+5Xr5WNrv2tDHhQ5Q7MVGHtQAAgD8AAAAAZmXjvOFKiLrOaAu6OiL6NZoqIjsGqiA5AACAPwAAgD/zYci9hXzauxjvxjyFVIo8Clw+vX0kaT0AAIA/AAAAACCiBL4p2DW6A0d0OcbtvTWbhfc7UMKQuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG/Z7Yp2rZkCUhpRSlIwBbJRN6AOMAXSUR0CPJwHUtqYadX2UKGgGaAloD0MIlX8tr9wxZECUhpRSlGgVTegDaBZHQI8u+Aqd6LR1fZQoaAZoCWgPQwhUq6+uClxpQJSGlFKUaBVN6ANoFkdAjy9CVjZtenV9lChoBmgJaA9DCOLplbIMVmlAlIaUUpRoFU3oA2gWR0CPM70cOskqdX2UKGgGaAloD0MI4iGMn0Y9ZUCUhpRSlGgVTegDaBZHQI83Vqxkd3l1fZQoaAZoCWgPQwjYLQJjfZxkQJSGlFKUaBVN6ANoFkdAj0JZtWMjvHV9lChoBmgJaA9DCGr5gat8cnJAlIaUUpRoFU1QAmgWR0CPREdcSoOydX2UKGgGaAloD0MId76fGq8XZECUhpRSlGgVTegDaBZHQI9F06o2n891fZQoaAZoCWgPQwg57pQO1ntBQJSGlFKUaBVL8GgWR0CPRlpFCswMdX2UKGgGaAloD0MImrLTD+rjYUCUhpRSlGgVTegDaBZHQI9MYWepXIV1fZQoaAZoCWgPQwiqCg3EskhnQJSGlFKUaBVN6ANoFkdAj4pCG34KyHV9lChoBmgJaA9DCF4robskAmlAlIaUUpRoFU3oA2gWR0CPi2BZIQOGdX2UKGgGaAloD0MIPZ0rSgmfZ0CUhpRSlGgVTegDaBZHQI+MYxpL26F1fZQoaAZoCWgPQwg3iNaKtsdoQJSGlFKUaBVN6ANoFkdAj5yKi48U23V9lChoBmgJaA9DCE/rNqj9ymFAlIaUUpRoFU3oA2gWR0CPoJ44ZMtcdX2UKGgGaAloD0MIVcA9zx9uaECUhpRSlGgVTegDaBZHQI+jVA1Nxlx1fZQoaAZoCWgPQwjr/xzmS3tlQJSGlFKUaBVN6ANoFkdAj6eWBSUC73V9lChoBmgJaA9DCMB63LfaGWRAlIaUUpRoFU3oA2gWR0CPrd3pOerddX2UKGgGaAloD0MIN1FLc6tiZECUhpRSlGgVTegDaBZHQI+29OIqLCN1fZQoaAZoCWgPQwgAA0GADGdlQJSGlFKUaBVN6ANoFkdAj7wzwUg0THV9lChoBmgJaA9DCJdSl4zjlWVAlIaUUpRoFU3oA2gWR0CPwApNKyv+dX2UKGgGaAloD0MIiuYBLPLFZkCUhpRSlGgVTegDaBZHQI/LOys0YTF1fZQoaAZoCWgPQwjVITfDDdVhQJSGlFKUaBVN6ANoFkdAj800mUnogXV9lChoBmgJaA9DCAdF8wAWqGNAlIaUUpRoFU3oA2gWR0CPztY6nzg/dX2UKGgGaAloD0MIVOI6xhXOYECUhpRSlGgVTegDaBZHQI/PXHo5ggJ1fZQoaAZoCWgPQwi7e4Duy7djQJSGlFKUaBVN6ANoFkdAj9UejdpItnV9lChoBmgJaA9DCJseFJTiyHBAlIaUUpRoFU1IAWgWR0CQB5ytV7x/dX2UKGgGaAloD0MIV9EfmnkFZkCUhpRSlGgVTegDaBZHQJAJDf/FR511fZQoaAZoCWgPQwiUaMnj6XdkQJSGlFKUaBVN6ANoFkdAkAmUYsNDt3V9lChoBmgJaA9DCJuQ1hh0GWFAlIaUUpRoFU3oA2gWR0CQChqqOtGNdX2UKGgGaAloD0MIai43GGp3cUCUhpRSlGgVTfsBaBZHQJALHF5v9+B1fZQoaAZoCWgPQwg7Vb5n5CJxQJSGlFKUaBVNhwFoFkdAkAzaqS5iE3V9lChoBmgJaA9DCI8c6QyMrmFAlIaUUpRoFU3oA2gWR0CQEb48EFGHdX2UKGgGaAloD0MIqtVXVwUAZ0CUhpRSlGgVTegDaBZHQJATsWRA8jl1fZQoaAZoCWgPQwjqd2Frti1kQJSGlFKUaBVN6ANoFkdAkBT1SS/0unV9lChoBmgJaA9DCCoCnN7FMWNAlIaUUpRoFU3oA2gWR0CQFwssg+yJdX2UKGgGaAloD0MIX+/+eK8iXkCUhpRSlGgVTegDaBZHQJAaN6/qPfd1fZQoaAZoCWgPQwgNNQpJpiFyQJSGlFKUaBVNcwFoFkdAkBz0Mw1zhnV9lChoBmgJaA9DCPxyZrtCNWRAlIaUUpRoFU3oA2gWR0CQHqQVbiZOdX2UKGgGaAloD0MIoMN8eYE0bkCUhpRSlGgVTYgBaBZHQJAf/tKIznB1fZQoaAZoCWgPQwjJWdjTjmNhQJSGlFKUaBVN6ANoFkdAkCEwQDmr83V9lChoBmgJaA9DCKhRSDIrdG5AlIaUUpRoFU2RAmgWR0CQKCDYh+vydX2UKGgGaAloD0MIyVht/t94ZkCUhpRSlGgVTegDaBZHQJAqAewLVnV1fZQoaAZoCWgPQwggJXZt70RmQJSGlFKUaBVN6ANoFkdAkCrj/hl183V9lChoBmgJaA9DCClauRcYFGNAlIaUUpRoFU3oA2gWR0CQLosbNr0rdX2UKGgGaAloD0MIfZOmQdErbkCUhpRSlGgVTbEDaBZHQJBMAksz2vl1fZQoaAZoCWgPQwjovwevXQBwQJSGlFKUaBVNnwJoFkdAkEwI5Lh73XV9lChoBmgJaA9DCDNwQEvX3XBAlIaUUpRoFU0pAWgWR0CQTMnqVyFPdX2UKGgGaAloD0MIvalIhbGHZ0CUhpRSlGgVTegDaBZHQJBNx8Z1mrd1fZQoaAZoCWgPQwgBMJ5BwyhjQJSGlFKUaBVN6ANoFkdAkE46vaDf33V9lChoBmgJaA9DCOwVFtxPlHBAlIaUUpRoFU3sAmgWR0CQVUUEPlMidX2UKGgGaAloD0MIk6ZB0TwCY0CUhpRSlGgVTegDaBZHQJBWZDWsijd1fZQoaAZoCWgPQwg8E5okljpnQJSGlFKUaBVN6ANoFkdAkFhHB+F10XV9lChoBmgJaA9DCAU0ETa8aHJAlIaUUpRoFU3WAWgWR0CQWF09QoCudX2UKGgGaAloD0MIABsQIa7WQECUhpRSlGgVS+JoFkdAkFhfBi1Aq3V9lChoBmgJaA9DCApLPKDsRmNAlIaUUpRoFU3oA2gWR0CQWWWdVea8dX2UKGgGaAloD0MIZLDiVOvwb0CUhpRSlGgVTTcBaBZHQJBaZTHbRF91fZQoaAZoCWgPQwiCVmDIqtpwQJSGlFKUaBVNEQNoFkdAkFqN7fHgg3V9lChoBmgJaA9DCJSgv9AjNG9AlIaUUpRoFU3FAmgWR0CQXLxTsIE9dX2UKGgGaAloD0MI9E4F3PPNY0CUhpRSlGgVTegDaBZHQJBda78Nx2l1fZQoaAZoCWgPQwiA7zZvnO5vQJSGlFKUaBVNxANoFkdAkGBYU8FINHV9lChoBmgJaA9DCN9OIsI/+2BAlIaUUpRoFU3oA2gWR0CQYL/Z/Tb4dX2UKGgGaAloD0MIVKpE2Vs/cUCUhpRSlGgVTbsBaBZHQJBhDnOjZct1fZQoaAZoCWgPQwjQKF36VzJyQJSGlFKUaBVNHgFoFkdAkGjpfhMrVnV9lChoBmgJaA9DCNI5P8XxnmVAlIaUUpRoFU3oA2gWR0CQau3Zf2K3dX2UKGgGaAloD0MIIEYIjzYXc0CUhpRSlGgVTWYBaBZHQJBtb752yLR1fZQoaAZoCWgPQwjoTNpU3dNuQJSGlFKUaBVNpAJoFkdAkHS3aWX1J3V9lChoBmgJaA9DCDTXaaSlXnFAlIaUUpRoFU1oAmgWR0CQdomfoRqXdX2UKGgGaAloD0MIhQoOL8gPcUCUhpRSlGgVTZMCaBZHQJB3Nu1ndwh1fZQoaAZoCWgPQwg1RBX+DLlQQJSGlFKUaBVL02gWR0CQirm2sq8UdX2UKGgGaAloD0MIxv1HpkPmcECUhpRSlGgVTdsCaBZHQJCMBs54nnd1fZQoaAZoCWgPQwgRww5j0i5lQJSGlFKUaBVN6ANoFkdAkIxb1AZ88nV9lChoBmgJaA9DCLEVNC0xuGZAlIaUUpRoFU3oA2gWR0CQjOf6XSjQdX2UKGgGaAloD0MILeqT3CGycECUhpRSlGgVTfQCaBZHQJCM8Wznied1fZQoaAZoCWgPQwhYHqSnyEtyQJSGlFKUaBVNcANoFkdAkI8auOjqOnV9lChoBmgJaA9DCHoX78ftBVBAlIaUUpRoFUvVaBZHQJCQQVKwpvx1fZQoaAZoCWgPQwhlwi/1sy5wQJSGlFKUaBVNoAJoFkdAkJIy53C9AXV9lChoBmgJaA9DCL0cdt+xPXBAlIaUUpRoFU3XAmgWR0CQk5QuEmICdX2UKGgGaAloD0MIObaeIdwwcUCUhpRSlGgVTRcBaBZHQJCVSS9ugpV1fZQoaAZoCWgPQwizsRLzrMRkQJSGlFKUaBVN6ANoFkdAkJYUvXbudHV9lChoBmgJaA9DCBy2LcqsInFAlIaUUpRoFU10AWgWR0CQl60h/y5JdX2UKGgGaAloD0MIFmwjnuywaECUhpRSlGgVTegDaBZHQJCX/6WPcSJ1fZQoaAZoCWgPQwg7cM6I0sdtQJSGlFKUaBVNyANoFkdAkJ3SHdoFmnV9lChoBmgJaA9DCKezk8HRJ3FAlIaUUpRoFU3CAWgWR0CQnplYlpoLdX2UKGgGaAloD0MI+DjThG39cECUhpRSlGgVTYgBaBZHQJCgGu8scyZ1fZQoaAZoCWgPQwgSaRt/orJHQJSGlFKUaBVLzmgWR0CQoId1MdtEdX2UKGgGaAloD0MIDAHAsWcjb0CUhpRSlGgVTYoDaBZHQJCjAAOrhit1fZQoaAZoCWgPQwiAnDBhNApvQJSGlFKUaBVNdQFoFkdAkKMxGMGX5XV9lChoBmgJaA9DCLNEZ5kFE3BAlIaUUpRoFU12A2gWR0CQo9JlJ6IFdX2UKGgGaAloD0MIZDvfTw3VcUCUhpRSlGgVTeMCaBZHQJCn0SCe2/l1fZQoaAZoCWgPQwjesG1RZgPkv5SGlFKUaBVLzGgWR0CQqJ0pmVZ+dX2UKGgGaAloD0MIIjfDDfhsb0CUhpRSlGgVTfQBaBZHQJCrM4T9KmN1fZQoaAZoCWgPQwjhXS7iO/VyQJSGlFKUaBVNVgFoFkdAkKx4i1RceXV9lChoBmgJaA9DCNxmKsQj0G1AlIaUUpRoFU0SA2gWR0CQrOKKHfuUdX2UKGgGaAloD0MIKa+V0F1YckCUhpRSlGgVTSoDaBZHQJCs9jnV5KR1fZQoaAZoCWgPQwju0LAYtSRzQJSGlFKUaBVNQgJoFkdAkK2ZKJ2t+3V9lChoBmgJaA9DCJ3VAntM+m9AlIaUUpRoFU00A2gWR0CQraL74zrNdX2UKGgGaAloD0MIQnxgx38dbECUhpRSlGgVTbYCaBZHQJCu1xFRYRx1fZQoaAZoCWgPQwifO8H+q/VxQJSGlFKUaBVNKgFoFkdAkK/wla8pTnV9lChoBmgJaA9DCMr8o2/StW1AlIaUUpRoFU1DAWgWR0CQsD5yEL6UdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52668164452c0f125a89258c11ead6ecb691e445179639e53ca8ca13797890f6
3
+ size 147210
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa37da7ddc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa37da7de50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa37da7dee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa37da7df70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa37da81040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa37da810d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa37da81160>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa37da811f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa37da81280>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa37da81310>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa37da813a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa37da79570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671546349963434611,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqLIj1NbgU+3/8TPPZnVb4LVjg9dUyvvAAAAAAAAAAApkPZva7Vibo/hze7vHYXtkWrSLsKp1Q6AACAPwAAAAAzdn09tMZ4PldNNb4UYGu+IhejvVvNzDwAAAAAAAAAAPMjhr0p2Fa6UlQqOBbJlTOkPPC5lplFtwAAgD8AAIA/ACOHvagnmj2jfWQ9mlYvvk5gxD3Cn7+8AAAAAAAAAAAau4a9mYxDPwDENb0Jg7m+/TsYvb3gF70AAAAAAAAAAGbK1DtyaBQ/PqDQvPLYkr6f8gc9DrcWPQAAAAAAAAAA2sClPXlSKD+gb/29EAWZvsKpqD06b4a5AAAAAAAAAACmySi+OKncPUzfMT7hgm6+QhyjOmqPnrkAAAAAAAAAAGbIKrxc9ym6Sqw2tl64i7Ac52q7FVJlNQAAgD8AAIA/Zo0PvXS1tj3yXlG+2R+OvsVaAb7SPxc9AAAAAAAAAABmDtW8SLeQuvpYQTp3r8o1QEOrOTVOYLkAAIA/AACAP6YK070fDc+5Xr5WNrv2tDHhQ5Q7MVGHtQAAgD8AAAAAZmXjvOFKiLrOaAu6OiL6NZoqIjsGqiA5AACAPwAAgD/zYci9hXzauxjvxjyFVIo8Clw+vX0kaT0AAIA/AAAAACCiBL4p2DW6A0d0OcbtvTWbhfc7UMKQuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG/Z7Yp2rZkCUhpRSlIwBbJRN6AOMAXSUR0CPJwHUtqYadX2UKGgGaAloD0MIlX8tr9wxZECUhpRSlGgVTegDaBZHQI8u+Aqd6LR1fZQoaAZoCWgPQwhUq6+uClxpQJSGlFKUaBVN6ANoFkdAjy9CVjZtenV9lChoBmgJaA9DCOLplbIMVmlAlIaUUpRoFU3oA2gWR0CPM70cOskqdX2UKGgGaAloD0MI4iGMn0Y9ZUCUhpRSlGgVTegDaBZHQI83Vqxkd3l1fZQoaAZoCWgPQwjYLQJjfZxkQJSGlFKUaBVN6ANoFkdAj0JZtWMjvHV9lChoBmgJaA9DCGr5gat8cnJAlIaUUpRoFU1QAmgWR0CPREdcSoOydX2UKGgGaAloD0MId76fGq8XZECUhpRSlGgVTegDaBZHQI9F06o2n891fZQoaAZoCWgPQwg57pQO1ntBQJSGlFKUaBVL8GgWR0CPRlpFCswMdX2UKGgGaAloD0MImrLTD+rjYUCUhpRSlGgVTegDaBZHQI9MYWepXIV1fZQoaAZoCWgPQwiqCg3EskhnQJSGlFKUaBVN6ANoFkdAj4pCG34KyHV9lChoBmgJaA9DCF4robskAmlAlIaUUpRoFU3oA2gWR0CPi2BZIQOGdX2UKGgGaAloD0MIPZ0rSgmfZ0CUhpRSlGgVTegDaBZHQI+MYxpL26F1fZQoaAZoCWgPQwg3iNaKtsdoQJSGlFKUaBVN6ANoFkdAj5yKi48U23V9lChoBmgJaA9DCE/rNqj9ymFAlIaUUpRoFU3oA2gWR0CPoJ44ZMtcdX2UKGgGaAloD0MIVcA9zx9uaECUhpRSlGgVTegDaBZHQI+jVA1Nxlx1fZQoaAZoCWgPQwjr/xzmS3tlQJSGlFKUaBVN6ANoFkdAj6eWBSUC73V9lChoBmgJaA9DCMB63LfaGWRAlIaUUpRoFU3oA2gWR0CPrd3pOerddX2UKGgGaAloD0MIN1FLc6tiZECUhpRSlGgVTegDaBZHQI+29OIqLCN1fZQoaAZoCWgPQwgAA0GADGdlQJSGlFKUaBVN6ANoFkdAj7wzwUg0THV9lChoBmgJaA9DCJdSl4zjlWVAlIaUUpRoFU3oA2gWR0CPwApNKyv+dX2UKGgGaAloD0MIiuYBLPLFZkCUhpRSlGgVTegDaBZHQI/LOys0YTF1fZQoaAZoCWgPQwjVITfDDdVhQJSGlFKUaBVN6ANoFkdAj800mUnogXV9lChoBmgJaA9DCAdF8wAWqGNAlIaUUpRoFU3oA2gWR0CPztY6nzg/dX2UKGgGaAloD0MIVOI6xhXOYECUhpRSlGgVTegDaBZHQI/PXHo5ggJ1fZQoaAZoCWgPQwi7e4Duy7djQJSGlFKUaBVN6ANoFkdAj9UejdpItnV9lChoBmgJaA9DCJseFJTiyHBAlIaUUpRoFU1IAWgWR0CQB5ytV7x/dX2UKGgGaAloD0MIV9EfmnkFZkCUhpRSlGgVTegDaBZHQJAJDf/FR511fZQoaAZoCWgPQwiUaMnj6XdkQJSGlFKUaBVN6ANoFkdAkAmUYsNDt3V9lChoBmgJaA9DCJuQ1hh0GWFAlIaUUpRoFU3oA2gWR0CQChqqOtGNdX2UKGgGaAloD0MIai43GGp3cUCUhpRSlGgVTfsBaBZHQJALHF5v9+B1fZQoaAZoCWgPQwg7Vb5n5CJxQJSGlFKUaBVNhwFoFkdAkAzaqS5iE3V9lChoBmgJaA9DCI8c6QyMrmFAlIaUUpRoFU3oA2gWR0CQEb48EFGHdX2UKGgGaAloD0MIqtVXVwUAZ0CUhpRSlGgVTegDaBZHQJATsWRA8jl1fZQoaAZoCWgPQwjqd2Frti1kQJSGlFKUaBVN6ANoFkdAkBT1SS/0unV9lChoBmgJaA9DCCoCnN7FMWNAlIaUUpRoFU3oA2gWR0CQFwssg+yJdX2UKGgGaAloD0MIX+/+eK8iXkCUhpRSlGgVTegDaBZHQJAaN6/qPfd1fZQoaAZoCWgPQwgNNQpJpiFyQJSGlFKUaBVNcwFoFkdAkBz0Mw1zhnV9lChoBmgJaA9DCPxyZrtCNWRAlIaUUpRoFU3oA2gWR0CQHqQVbiZOdX2UKGgGaAloD0MIoMN8eYE0bkCUhpRSlGgVTYgBaBZHQJAf/tKIznB1fZQoaAZoCWgPQwjJWdjTjmNhQJSGlFKUaBVN6ANoFkdAkCEwQDmr83V9lChoBmgJaA9DCKhRSDIrdG5AlIaUUpRoFU2RAmgWR0CQKCDYh+vydX2UKGgGaAloD0MIyVht/t94ZkCUhpRSlGgVTegDaBZHQJAqAewLVnV1fZQoaAZoCWgPQwggJXZt70RmQJSGlFKUaBVN6ANoFkdAkCrj/hl183V9lChoBmgJaA9DCClauRcYFGNAlIaUUpRoFU3oA2gWR0CQLosbNr0rdX2UKGgGaAloD0MIfZOmQdErbkCUhpRSlGgVTbEDaBZHQJBMAksz2vl1fZQoaAZoCWgPQwjovwevXQBwQJSGlFKUaBVNnwJoFkdAkEwI5Lh73XV9lChoBmgJaA9DCDNwQEvX3XBAlIaUUpRoFU0pAWgWR0CQTMnqVyFPdX2UKGgGaAloD0MIvalIhbGHZ0CUhpRSlGgVTegDaBZHQJBNx8Z1mrd1fZQoaAZoCWgPQwgBMJ5BwyhjQJSGlFKUaBVN6ANoFkdAkE46vaDf33V9lChoBmgJaA9DCOwVFtxPlHBAlIaUUpRoFU3sAmgWR0CQVUUEPlMidX2UKGgGaAloD0MIk6ZB0TwCY0CUhpRSlGgVTegDaBZHQJBWZDWsijd1fZQoaAZoCWgPQwg8E5okljpnQJSGlFKUaBVN6ANoFkdAkFhHB+F10XV9lChoBmgJaA9DCAU0ETa8aHJAlIaUUpRoFU3WAWgWR0CQWF09QoCudX2UKGgGaAloD0MIABsQIa7WQECUhpRSlGgVS+JoFkdAkFhfBi1Aq3V9lChoBmgJaA9DCApLPKDsRmNAlIaUUpRoFU3oA2gWR0CQWWWdVea8dX2UKGgGaAloD0MIZLDiVOvwb0CUhpRSlGgVTTcBaBZHQJBaZTHbRF91fZQoaAZoCWgPQwiCVmDIqtpwQJSGlFKUaBVNEQNoFkdAkFqN7fHgg3V9lChoBmgJaA9DCJSgv9AjNG9AlIaUUpRoFU3FAmgWR0CQXLxTsIE9dX2UKGgGaAloD0MI9E4F3PPNY0CUhpRSlGgVTegDaBZHQJBda78Nx2l1fZQoaAZoCWgPQwiA7zZvnO5vQJSGlFKUaBVNxANoFkdAkGBYU8FINHV9lChoBmgJaA9DCN9OIsI/+2BAlIaUUpRoFU3oA2gWR0CQYL/Z/Tb4dX2UKGgGaAloD0MIVKpE2Vs/cUCUhpRSlGgVTbsBaBZHQJBhDnOjZct1fZQoaAZoCWgPQwjQKF36VzJyQJSGlFKUaBVNHgFoFkdAkGjpfhMrVnV9lChoBmgJaA9DCNI5P8XxnmVAlIaUUpRoFU3oA2gWR0CQau3Zf2K3dX2UKGgGaAloD0MIIEYIjzYXc0CUhpRSlGgVTWYBaBZHQJBtb752yLR1fZQoaAZoCWgPQwjoTNpU3dNuQJSGlFKUaBVNpAJoFkdAkHS3aWX1J3V9lChoBmgJaA9DCDTXaaSlXnFAlIaUUpRoFU1oAmgWR0CQdomfoRqXdX2UKGgGaAloD0MIhQoOL8gPcUCUhpRSlGgVTZMCaBZHQJB3Nu1ndwh1fZQoaAZoCWgPQwg1RBX+DLlQQJSGlFKUaBVL02gWR0CQirm2sq8UdX2UKGgGaAloD0MIxv1HpkPmcECUhpRSlGgVTdsCaBZHQJCMBs54nnd1fZQoaAZoCWgPQwgRww5j0i5lQJSGlFKUaBVN6ANoFkdAkIxb1AZ88nV9lChoBmgJaA9DCLEVNC0xuGZAlIaUUpRoFU3oA2gWR0CQjOf6XSjQdX2UKGgGaAloD0MILeqT3CGycECUhpRSlGgVTfQCaBZHQJCM8Wznied1fZQoaAZoCWgPQwhYHqSnyEtyQJSGlFKUaBVNcANoFkdAkI8auOjqOnV9lChoBmgJaA9DCHoX78ftBVBAlIaUUpRoFUvVaBZHQJCQQVKwpvx1fZQoaAZoCWgPQwhlwi/1sy5wQJSGlFKUaBVNoAJoFkdAkJIy53C9AXV9lChoBmgJaA9DCL0cdt+xPXBAlIaUUpRoFU3XAmgWR0CQk5QuEmICdX2UKGgGaAloD0MIObaeIdwwcUCUhpRSlGgVTRcBaBZHQJCVSS9ugpV1fZQoaAZoCWgPQwizsRLzrMRkQJSGlFKUaBVN6ANoFkdAkJYUvXbudHV9lChoBmgJaA9DCBy2LcqsInFAlIaUUpRoFU10AWgWR0CQl60h/y5JdX2UKGgGaAloD0MIFmwjnuywaECUhpRSlGgVTegDaBZHQJCX/6WPcSJ1fZQoaAZoCWgPQwg7cM6I0sdtQJSGlFKUaBVNyANoFkdAkJ3SHdoFmnV9lChoBmgJaA9DCKezk8HRJ3FAlIaUUpRoFU3CAWgWR0CQnplYlpoLdX2UKGgGaAloD0MI+DjThG39cECUhpRSlGgVTYgBaBZHQJCgGu8scyZ1fZQoaAZoCWgPQwgSaRt/orJHQJSGlFKUaBVLzmgWR0CQoId1MdtEdX2UKGgGaAloD0MIDAHAsWcjb0CUhpRSlGgVTYoDaBZHQJCjAAOrhit1fZQoaAZoCWgPQwiAnDBhNApvQJSGlFKUaBVNdQFoFkdAkKMxGMGX5XV9lChoBmgJaA9DCLNEZ5kFE3BAlIaUUpRoFU12A2gWR0CQo9JlJ6IFdX2UKGgGaAloD0MIZDvfTw3VcUCUhpRSlGgVTeMCaBZHQJCn0SCe2/l1fZQoaAZoCWgPQwjesG1RZgPkv5SGlFKUaBVLzGgWR0CQqJ0pmVZ+dX2UKGgGaAloD0MIIjfDDfhsb0CUhpRSlGgVTfQBaBZHQJCrM4T9KmN1fZQoaAZoCWgPQwjhXS7iO/VyQJSGlFKUaBVNVgFoFkdAkKx4i1RceXV9lChoBmgJaA9DCNxmKsQj0G1AlIaUUpRoFU0SA2gWR0CQrOKKHfuUdX2UKGgGaAloD0MIKa+V0F1YckCUhpRSlGgVTSoDaBZHQJCs9jnV5KR1fZQoaAZoCWgPQwju0LAYtSRzQJSGlFKUaBVNQgJoFkdAkK2ZKJ2t+3V9lChoBmgJaA9DCJ3VAntM+m9AlIaUUpRoFU00A2gWR0CQraL74zrNdX2UKGgGaAloD0MIQnxgx38dbECUhpRSlGgVTbYCaBZHQJCu1xFRYRx1fZQoaAZoCWgPQwifO8H+q/VxQJSGlFKUaBVNKgFoFkdAkK/wla8pTnV9lChoBmgJaA9DCMr8o2/StW1AlIaUUpRoFU1DAWgWR0CQsD5yEL6UdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:768db49350f9e0388e39f5bfd7af86818b160e6364cf31f7b4f1e65ca5259dc9
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0879426b96ba3747c854c63337d7a2d5493b30dcc940fa5b82881533ea27e5e3
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (242 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.7505446024617, "std_reward": 17.513593545123207, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T14:44:17.098981"}