Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.43 +/- 0.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff95d0805c1866abd9178fcfb517cd9915733f8c7b7ae805b5a14797c751820
|
3 |
+
size 108053
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f153e2799d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f153e27aa00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 90000,
|
23 |
+
"_total_timesteps": 90000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681754816358799923,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+mFrPvuFYLvNOhE/+mFrPvuFYLvNOhE/+mFrPvuFYLvNOhE/+mFrPvuFYLvNOhE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPsN8PwAbo75Npqq/CA6sv0XKfb+Kf9o+X1fVP4oY7D6ybHU/ZAenvw5CiD/ZGto+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6YWs++4Vgu806ET+iwyk89oe4uleJ5Tz6YWs++4Vgu806ET+iwyk89oe4uleJ5Tz6YWs++4Vgu806ET+iwyk89oe4uleJ5Tz6YWs++4Vgu806ET+iwyk89oe4uleJ5TyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.22986594 -0.00342595 0.5673035 ]\n [ 0.22986594 -0.00342595 0.5673035 ]\n [ 0.22986594 -0.00342595 0.5673035 ]\n [ 0.22986594 -0.00342595 0.5673035 ]]",
|
38 |
+
"desired_goal": "[[ 0.98735416 -0.31856537 -1.3332001 ]\n [-1.3441782 -0.99136764 0.4267543 ]\n [ 1.6667289 0.46112472 0.9586898 ]\n [-1.304913 1.0645158 0.42598608]]",
|
39 |
+
"observation": "[[ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]\n [ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]\n [ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]\n [ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/8SpvA+Pnb1McbI942SyvRKB7bv234g9mWSmvaOKgz1EF1s+cSoivTlMLz2fSXM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.02072382 -0.07693302 0.08713016]\n [-0.08710649 -0.00724805 0.06683342]\n [-0.08124656 0.06422927 0.21395594]\n [-0.03959126 0.0427973 0.23758553]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITdaoh2h0/b+UhpRSlIwBbJRLMowBdJRHQG9ngYgq3E11fZQoaAZoCWgPQwiPN/ktOpkAwJSGlFKUaBVLMmgWR0BvY7ZvkzXSdX2UKGgGaAloD0MIOs5twr1y+7+UhpRSlGgVSzJoFkdAb1/coH9m6HV9lChoBmgJaA9DCObKoNrgxPy/lIaUUpRoFUsyaBZHQG9b+fAbhm51fZQoaAZoCWgPQwilEMgljvz7v5SGlFKUaBVLMmgWR0BvdkeCCjDbdX2UKGgGaAloD0MIRga5izBF/r+UhpRSlGgVSzJoFkdAb3J62v0ROHV9lChoBmgJaA9DCJKtLqcEhPy/lIaUUpRoFUsyaBZHQG9unjhky1x1fZQoaAZoCWgPQwie76fGS7f8v5SGlFKUaBVLMmgWR0Bvarr1M/QjdX2UKGgGaAloD0MIBFq6gm0E+L+UhpRSlGgVSzJoFkdAb4Zb48EFGHV9lChoBmgJaA9DCARVo1cDFPu/lIaUUpRoFUsyaBZHQG+CjIikftB1fZQoaAZoCWgPQwjl8bT8wNX7v5SGlFKUaBVLMmgWR0Bvfq/wiJO4dX2UKGgGaAloD0MIYyZRL/g0AMCUhpRSlGgVSzJoFkdAb3rOSGJvYXV9lChoBmgJaA9DCDRIwVPIlfq/lIaUUpRoFUsyaBZHQG+WkYwZflZ1fZQoaAZoCWgPQwiu82+X/Xr+v5SGlFKUaBVLMmgWR0BvksFjd56ddX2UKGgGaAloD0MIXf3YJD/i/b+UhpRSlGgVSzJoFkdAb47nSv1UVHV9lChoBmgJaA9DCFLTLqaZrvm/lIaUUpRoFUsyaBZHQG+LBUJfICF1fZQoaAZoCWgPQwg8EcR5OMH5v5SGlFKUaBVLMmgWR0BvpwXsPatcdX2UKGgGaAloD0MIQzo8hPFT+L+UhpRSlGgVSzJoFkdAb6M3ocJdB3V9lChoBmgJaA9DCF+y8WCL3fm/lIaUUpRoFUsyaBZHQG+fWzv7WNF1fZQoaAZoCWgPQwi86ZYd4l/2v5SGlFKUaBVLMmgWR0Bvm36Mzdk8dX2UKGgGaAloD0MInfUpx2Qx+L+UhpRSlGgVSzJoFkdAb7ciwB5ooXV9lChoBmgJaA9DCNb+zvbozf6/lIaUUpRoFUsyaBZHQG+zUt7KJVN1fZQoaAZoCWgPQwjXhR+cT138v5SGlFKUaBVLMmgWR0Bvr3a+N96UdX2UKGgGaAloD0MIxcVRuYka+b+UhpRSlGgVSzJoFkdAb6ubedkJ8nV9lChoBmgJaA9DCLxa7swEg/u/lIaUUpRoFUsyaBZHQG/LP2wmmch1fZQoaAZoCWgPQwjJdVPKa6X5v5SGlFKUaBVLMmgWR0Bvx3tY0VJudX2UKGgGaAloD0MIXp8561PO/7+UhpRSlGgVSzJoFkdAb8OsH0K7ZnV9lChoBmgJaA9DCNNp3Qa13/m/lIaUUpRoFUsyaBZHQG+/1NxlxwR1fZQoaAZoCWgPQwgMA5ZcxaL6v5SGlFKUaBVLMmgWR0Bv45TGYKIBdX2UKGgGaAloD0MI0Xr4MlGE+L+UhpRSlGgVSzJoFkdAb9/PuXu3MXV9lChoBmgJaA9DCNaO4hx1tPa/lIaUUpRoFUsyaBZHQG/cCQDFId51fZQoaAZoCWgPQwhsWikEcon8v5SGlFKUaBVLMmgWR0Bv2C7Ackt3dX2UKGgGaAloD0MI/FI/byqS+L+UhpRSlGgVSzJoFkdAb/vqpLmITHV9lChoBmgJaA9DCC46WWq93/u/lIaUUpRoFUsyaBZHQG/4NC7btZ51fZQoaAZoCWgPQwjx1Y7iHPX8v5SGlFKUaBVLMmgWR0Bv9GYx+KCQdX2UKGgGaAloD0MIe7yQDg8h/b+UhpRSlGgVSzJoFkdAb/CPxQSBb3V9lChoBmgJaA9DCNlAuti0Evm/lIaUUpRoFUsyaBZHQHAKJHiFTNt1fZQoaAZoCWgPQwgq5Eo9CwL/v5SGlFKUaBVLMmgWR0BwCEJVsDW9dX2UKGgGaAloD0MIqfbpeMwA9r+UhpRSlGgVSzJoFkdAcAZeu3c583V9lChoBmgJaA9DCPw2xHjNa/q/lIaUUpRoFUsyaBZHQHAEcvM8ox51fZQoaAZoCWgPQwgDsAER4or0v5SGlFKUaBVLMmgWR0BwF/ksBhhIdX2UKGgGaAloD0MIxAWgUbq0+r+UhpRSlGgVSzJoFkdAcBYYraufVnV9lChoBmgJaA9DCAbX3NH/svq/lIaUUpRoFUsyaBZHQHAUMKb8WKx1fZQoaAZoCWgPQwh7gy9Mpsr6v5SGlFKUaBVLMmgWR0BwEktBfKISdX2UKGgGaAloD0MIMC3qk9yh/r+UhpRSlGgVSzJoFkdAcCTLx7RfGHV9lChoBmgJaA9DCADjGTT0j/u/lIaUUpRoFUsyaBZHQHAi6WszVMF1fZQoaAZoCWgPQwgKoYMu4ZD/v5SGlFKUaBVLMmgWR0BwIQGbCrLhdX2UKGgGaAloD0MIBmfw94uZ+7+UhpRSlGgVSzJoFkdAcB8XL/0dzXV9lChoBmgJaA9DCNdqD3uhAPu/lIaUUpRoFUsyaBZHQHAxHarWAgB1fZQoaAZoCWgPQwikqgmi7kP1v5SGlFKUaBVLMmgWR0BwLzlHSWqtdX2UKGgGaAloD0MIl3X/WIhO97+UhpRSlGgVSzJoFkdAcC1RRuTA33V9lChoBmgJaA9DCBsv3SQGQfq/lIaUUpRoFUsyaBZHQHAraW5Yoy91fZQoaAZoCWgPQwgTfT7KiMv5v5SGlFKUaBVLMmgWR0BwOW1TisGQdX2UKGgGaAloD0MIWqFI93MK/7+UhpRSlGgVSzJoFkdAcDeFkQPI4nV9lChoBmgJaA9DCBiT/l4KT/m/lIaUUpRoFUsyaBZHQHA1l9KEnLJ1fZQoaAZoCWgPQwgH0zB8RIz+v5SGlFKUaBVLMmgWR0BwM6cf/3nIdX2UKGgGaAloD0MICrq9pDEa+7+UhpRSlGgVSzJoFkdAcEDuhK15SnV9lChoBmgJaA9DCMk6HF2l+/e/lIaUUpRoFUsyaBZHQHA/B8+iaiN1fZQoaAZoCWgPQwhNS6yMRj4AwJSGlFKUaBVLMmgWR0BwPRp48loldX2UKGgGaAloD0MIETgSaLCp9r+UhpRSlGgVSzJoFkdAcDsqDbrTpnV9lChoBmgJaA9DCMb83NCUHfu/lIaUUpRoFUsyaBZHQHBJArYoRZl1fZQoaAZoCWgPQwhxVG6ilmb8v5SGlFKUaBVLMmgWR0BwRxtcfNiZdX2UKGgGaAloD0MIe2e0VUmk+7+UhpRSlGgVSzJoFkdAcEUtqpLmIXV9lChoBmgJaA9DCJbLRuf81P+/lIaUUpRoFUsyaBZHQHBDP7FbVz91fZQoaAZoCWgPQwhUOIJUih34v5SGlFKUaBVLMmgWR0BwUMG2TgVHdX2UKGgGaAloD0MIvTrHgOy1+r+UhpRSlGgVSzJoFkdAcE7cpsoDxXV9lChoBmgJaA9DCENwXMZNDfq/lIaUUpRoFUsyaBZHQHBM7tmcvuh1fZQoaAZoCWgPQwisVbsmpDX9v5SGlFKUaBVLMmgWR0BwSv2Dg62fdX2UKGgGaAloD0MIW5pbIayG/L+UhpRSlGgVSzJoFkdAcFjUbkwN9nV9lChoBmgJaA9DCCJwJNBgk/q/lIaUUpRoFUsyaBZHQHBW7t7a7Ep1fZQoaAZoCWgPQwj68gLso1P/v5SGlFKUaBVLMmgWR0BwVQNOM2m6dX2UKGgGaAloD0MIeeqRBrf19r+UhpRSlGgVSzJoFkdAcFMUBnzxw3V9lChoBmgJaA9DCAUVVb/Suf6/lIaUUpRoFUsyaBZHQHBgkd/8VHp1fZQoaAZoCWgPQwhNFYxK6kT/v5SGlFKUaBVLMmgWR0BwXrFrEcbSdX2UKGgGaAloD0MItvXTf9b8+7+UhpRSlGgVSzJoFkdAcFzD4QBgeHV9lChoBmgJaA9DCFsJ3SVxVve/lIaUUpRoFUsyaBZHQHBa0qx1PnB1fZQoaAZoCWgPQwgS2QdZFuwAwJSGlFKUaBVLMmgWR0BwaC1pj+aSdX2UKGgGaAloD0MIem02VmLe+r+UhpRSlGgVSzJoFkdAcGZFtsN2DHV9lChoBmgJaA9DCNHP1OsWgfy/lIaUUpRoFUsyaBZHQHBkWGucME11fZQoaAZoCWgPQwg3UUtzK4T9v5SGlFKUaBVLMmgWR0BwYmdWhh6TdX2UKGgGaAloD0MIUS0iisnb+7+UhpRSlGgVSzJoFkdAcG+p1RtP6HV9lChoBmgJaA9DCBFRTN4Ac/2/lIaUUpRoFUsyaBZHQHBtxUJfICF1fZQoaAZoCWgPQwiG4/kMqDf0v5SGlFKUaBVLMmgWR0Bwa9uk1uR+dX2UKGgGaAloD0MIOQ68Wu7M+r+UhpRSlGgVSzJoFkdAcGntMwlByHV9lChoBmgJaA9DCJHUQsnklP2/lIaUUpRoFUsyaBZHQHB3hPGhmGx1fZQoaAZoCWgPQwgG1nH8UOn2v5SGlFKUaBVLMmgWR0BwdZ4SpR4ydX2UKGgGaAloD0MIcM0d/S/X/b+UhpRSlGgVSzJoFkdAcHOwVj7Q9nV9lChoBmgJaA9DCB1yM9yAT/2/lIaUUpRoFUsyaBZHQHBxwWnCO3l1fZQoaAZoCWgPQwgr+64I/nf+v5SGlFKUaBVLMmgWR0Bwfy19fCyhdX2UKGgGaAloD0MI5NpQMc7f+7+UhpRSlGgVSzJoFkdAcH1G2TgVGnV9lChoBmgJaA9DCJs90AoM2fy/lIaUUpRoFUsyaBZHQHB7WiDdxhl1fZQoaAZoCWgPQwjshm2LMtv5v5SGlFKUaBVLMmgWR0BweWjM3ZPEdX2UKGgGaAloD0MIIAw89x4u/r+UhpRSlGgVSzJoFkdAcIbGiHqNZXV9lChoBmgJaA9DCEKWBRN/1P2/lIaUUpRoFUsyaBZHQHCE4pc5bQl1fZQoaAZoCWgPQwh3aFiMuhb3v5SGlFKUaBVLMmgWR0BwgvcqOLiudX2UKGgGaAloD0MIms+52/US+b+UhpRSlGgVSzJoFkdAcIEIZqEeyXV9lChoBmgJaA9DCKdc4V0u4v+/lIaUUpRoFUsyaBZHQHCOmzjWCmN1fZQoaAZoCWgPQwgPKQZINMH2v5SGlFKUaBVLMmgWR0BwjLc580DVdX2UKGgGaAloD0MIx/FDpRGz+7+UhpRSlGgVSzJoFkdAcIrKU3XI2nV9lChoBmgJaA9DCHLhQEgWMP6/lIaUUpRoFUsyaBZHQHCI2tlqagF1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 4500,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed4bc1a678e331e082fcd099b79aaf2c369b27127309bb718225d428df5517fd
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6b2173f3bf9a16c605328ac675dd440d6eb46732a241a1076cd97d2b341569d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f153e2799d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f153e27aa00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 90000, "_total_timesteps": 90000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681754816358799923, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+mFrPvuFYLvNOhE/+mFrPvuFYLvNOhE/+mFrPvuFYLvNOhE/+mFrPvuFYLvNOhE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPsN8PwAbo75Npqq/CA6sv0XKfb+Kf9o+X1fVP4oY7D6ybHU/ZAenvw5CiD/ZGto+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6YWs++4Vgu806ET+iwyk89oe4uleJ5Tz6YWs++4Vgu806ET+iwyk89oe4uleJ5Tz6YWs++4Vgu806ET+iwyk89oe4uleJ5Tz6YWs++4Vgu806ET+iwyk89oe4uleJ5TyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.22986594 -0.00342595 0.5673035 ]\n [ 0.22986594 -0.00342595 0.5673035 ]\n [ 0.22986594 -0.00342595 0.5673035 ]\n [ 0.22986594 -0.00342595 0.5673035 ]]", "desired_goal": "[[ 0.98735416 -0.31856537 -1.3332001 ]\n [-1.3441782 -0.99136764 0.4267543 ]\n [ 1.6667289 0.46112472 0.9586898 ]\n [-1.304913 1.0645158 0.42598608]]", "observation": "[[ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]\n [ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]\n [ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]\n [ 0.22986594 -0.00342595 0.5673035 0.01036158 -0.00140786 0.02801959]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/8SpvA+Pnb1McbI942SyvRKB7bv234g9mWSmvaOKgz1EF1s+cSoivTlMLz2fSXM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02072382 -0.07693302 0.08713016]\n [-0.08710649 -0.00724805 0.06683342]\n [-0.08124656 0.06422927 0.21395594]\n [-0.03959126 0.0427973 0.23758553]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITdaoh2h0/b+UhpRSlIwBbJRLMowBdJRHQG9ngYgq3E11fZQoaAZoCWgPQwiPN/ktOpkAwJSGlFKUaBVLMmgWR0BvY7ZvkzXSdX2UKGgGaAloD0MIOs5twr1y+7+UhpRSlGgVSzJoFkdAb1/coH9m6HV9lChoBmgJaA9DCObKoNrgxPy/lIaUUpRoFUsyaBZHQG9b+fAbhm51fZQoaAZoCWgPQwilEMgljvz7v5SGlFKUaBVLMmgWR0BvdkeCCjDbdX2UKGgGaAloD0MIRga5izBF/r+UhpRSlGgVSzJoFkdAb3J62v0ROHV9lChoBmgJaA9DCJKtLqcEhPy/lIaUUpRoFUsyaBZHQG9unjhky1x1fZQoaAZoCWgPQwie76fGS7f8v5SGlFKUaBVLMmgWR0Bvarr1M/QjdX2UKGgGaAloD0MIBFq6gm0E+L+UhpRSlGgVSzJoFkdAb4Zb48EFGHV9lChoBmgJaA9DCARVo1cDFPu/lIaUUpRoFUsyaBZHQG+CjIikftB1fZQoaAZoCWgPQwjl8bT8wNX7v5SGlFKUaBVLMmgWR0Bvfq/wiJO4dX2UKGgGaAloD0MIYyZRL/g0AMCUhpRSlGgVSzJoFkdAb3rOSGJvYXV9lChoBmgJaA9DCDRIwVPIlfq/lIaUUpRoFUsyaBZHQG+WkYwZflZ1fZQoaAZoCWgPQwiu82+X/Xr+v5SGlFKUaBVLMmgWR0BvksFjd56ddX2UKGgGaAloD0MIXf3YJD/i/b+UhpRSlGgVSzJoFkdAb47nSv1UVHV9lChoBmgJaA9DCFLTLqaZrvm/lIaUUpRoFUsyaBZHQG+LBUJfICF1fZQoaAZoCWgPQwg8EcR5OMH5v5SGlFKUaBVLMmgWR0BvpwXsPatcdX2UKGgGaAloD0MIQzo8hPFT+L+UhpRSlGgVSzJoFkdAb6M3ocJdB3V9lChoBmgJaA9DCF+y8WCL3fm/lIaUUpRoFUsyaBZHQG+fWzv7WNF1fZQoaAZoCWgPQwi86ZYd4l/2v5SGlFKUaBVLMmgWR0Bvm36Mzdk8dX2UKGgGaAloD0MInfUpx2Qx+L+UhpRSlGgVSzJoFkdAb7ciwB5ooXV9lChoBmgJaA9DCNb+zvbozf6/lIaUUpRoFUsyaBZHQG+zUt7KJVN1fZQoaAZoCWgPQwjXhR+cT138v5SGlFKUaBVLMmgWR0Bvr3a+N96UdX2UKGgGaAloD0MIxcVRuYka+b+UhpRSlGgVSzJoFkdAb6ubedkJ8nV9lChoBmgJaA9DCLxa7swEg/u/lIaUUpRoFUsyaBZHQG/LP2wmmch1fZQoaAZoCWgPQwjJdVPKa6X5v5SGlFKUaBVLMmgWR0Bvx3tY0VJudX2UKGgGaAloD0MIXp8561PO/7+UhpRSlGgVSzJoFkdAb8OsH0K7ZnV9lChoBmgJaA9DCNNp3Qa13/m/lIaUUpRoFUsyaBZHQG+/1NxlxwR1fZQoaAZoCWgPQwgMA5ZcxaL6v5SGlFKUaBVLMmgWR0Bv45TGYKIBdX2UKGgGaAloD0MI0Xr4MlGE+L+UhpRSlGgVSzJoFkdAb9/PuXu3MXV9lChoBmgJaA9DCNaO4hx1tPa/lIaUUpRoFUsyaBZHQG/cCQDFId51fZQoaAZoCWgPQwhsWikEcon8v5SGlFKUaBVLMmgWR0Bv2C7Ackt3dX2UKGgGaAloD0MI/FI/byqS+L+UhpRSlGgVSzJoFkdAb/vqpLmITHV9lChoBmgJaA9DCC46WWq93/u/lIaUUpRoFUsyaBZHQG/4NC7btZ51fZQoaAZoCWgPQwjx1Y7iHPX8v5SGlFKUaBVLMmgWR0Bv9GYx+KCQdX2UKGgGaAloD0MIe7yQDg8h/b+UhpRSlGgVSzJoFkdAb/CPxQSBb3V9lChoBmgJaA9DCNlAuti0Evm/lIaUUpRoFUsyaBZHQHAKJHiFTNt1fZQoaAZoCWgPQwgq5Eo9CwL/v5SGlFKUaBVLMmgWR0BwCEJVsDW9dX2UKGgGaAloD0MIqfbpeMwA9r+UhpRSlGgVSzJoFkdAcAZeu3c583V9lChoBmgJaA9DCPw2xHjNa/q/lIaUUpRoFUsyaBZHQHAEcvM8ox51fZQoaAZoCWgPQwgDsAER4or0v5SGlFKUaBVLMmgWR0BwF/ksBhhIdX2UKGgGaAloD0MIxAWgUbq0+r+UhpRSlGgVSzJoFkdAcBYYraufVnV9lChoBmgJaA9DCAbX3NH/svq/lIaUUpRoFUsyaBZHQHAUMKb8WKx1fZQoaAZoCWgPQwh7gy9Mpsr6v5SGlFKUaBVLMmgWR0BwEktBfKISdX2UKGgGaAloD0MIMC3qk9yh/r+UhpRSlGgVSzJoFkdAcCTLx7RfGHV9lChoBmgJaA9DCADjGTT0j/u/lIaUUpRoFUsyaBZHQHAi6WszVMF1fZQoaAZoCWgPQwgKoYMu4ZD/v5SGlFKUaBVLMmgWR0BwIQGbCrLhdX2UKGgGaAloD0MIBmfw94uZ+7+UhpRSlGgVSzJoFkdAcB8XL/0dzXV9lChoBmgJaA9DCNdqD3uhAPu/lIaUUpRoFUsyaBZHQHAxHarWAgB1fZQoaAZoCWgPQwikqgmi7kP1v5SGlFKUaBVLMmgWR0BwLzlHSWqtdX2UKGgGaAloD0MIl3X/WIhO97+UhpRSlGgVSzJoFkdAcC1RRuTA33V9lChoBmgJaA9DCBsv3SQGQfq/lIaUUpRoFUsyaBZHQHAraW5Yoy91fZQoaAZoCWgPQwgTfT7KiMv5v5SGlFKUaBVLMmgWR0BwOW1TisGQdX2UKGgGaAloD0MIWqFI93MK/7+UhpRSlGgVSzJoFkdAcDeFkQPI4nV9lChoBmgJaA9DCBiT/l4KT/m/lIaUUpRoFUsyaBZHQHA1l9KEnLJ1fZQoaAZoCWgPQwgH0zB8RIz+v5SGlFKUaBVLMmgWR0BwM6cf/3nIdX2UKGgGaAloD0MICrq9pDEa+7+UhpRSlGgVSzJoFkdAcEDuhK15SnV9lChoBmgJaA9DCMk6HF2l+/e/lIaUUpRoFUsyaBZHQHA/B8+iaiN1fZQoaAZoCWgPQwhNS6yMRj4AwJSGlFKUaBVLMmgWR0BwPRp48loldX2UKGgGaAloD0MIETgSaLCp9r+UhpRSlGgVSzJoFkdAcDsqDbrTpnV9lChoBmgJaA9DCMb83NCUHfu/lIaUUpRoFUsyaBZHQHBJArYoRZl1fZQoaAZoCWgPQwhxVG6ilmb8v5SGlFKUaBVLMmgWR0BwRxtcfNiZdX2UKGgGaAloD0MIe2e0VUmk+7+UhpRSlGgVSzJoFkdAcEUtqpLmIXV9lChoBmgJaA9DCJbLRuf81P+/lIaUUpRoFUsyaBZHQHBDP7FbVz91fZQoaAZoCWgPQwhUOIJUih34v5SGlFKUaBVLMmgWR0BwUMG2TgVHdX2UKGgGaAloD0MIvTrHgOy1+r+UhpRSlGgVSzJoFkdAcE7cpsoDxXV9lChoBmgJaA9DCENwXMZNDfq/lIaUUpRoFUsyaBZHQHBM7tmcvuh1fZQoaAZoCWgPQwisVbsmpDX9v5SGlFKUaBVLMmgWR0BwSv2Dg62fdX2UKGgGaAloD0MIW5pbIayG/L+UhpRSlGgVSzJoFkdAcFjUbkwN9nV9lChoBmgJaA9DCCJwJNBgk/q/lIaUUpRoFUsyaBZHQHBW7t7a7Ep1fZQoaAZoCWgPQwj68gLso1P/v5SGlFKUaBVLMmgWR0BwVQNOM2m6dX2UKGgGaAloD0MIeeqRBrf19r+UhpRSlGgVSzJoFkdAcFMUBnzxw3V9lChoBmgJaA9DCAUVVb/Suf6/lIaUUpRoFUsyaBZHQHBgkd/8VHp1fZQoaAZoCWgPQwhNFYxK6kT/v5SGlFKUaBVLMmgWR0BwXrFrEcbSdX2UKGgGaAloD0MItvXTf9b8+7+UhpRSlGgVSzJoFkdAcFzD4QBgeHV9lChoBmgJaA9DCFsJ3SVxVve/lIaUUpRoFUsyaBZHQHBa0qx1PnB1fZQoaAZoCWgPQwgS2QdZFuwAwJSGlFKUaBVLMmgWR0BwaC1pj+aSdX2UKGgGaAloD0MIem02VmLe+r+UhpRSlGgVSzJoFkdAcGZFtsN2DHV9lChoBmgJaA9DCNHP1OsWgfy/lIaUUpRoFUsyaBZHQHBkWGucME11fZQoaAZoCWgPQwg3UUtzK4T9v5SGlFKUaBVLMmgWR0BwYmdWhh6TdX2UKGgGaAloD0MIUS0iisnb+7+UhpRSlGgVSzJoFkdAcG+p1RtP6HV9lChoBmgJaA9DCBFRTN4Ac/2/lIaUUpRoFUsyaBZHQHBtxUJfICF1fZQoaAZoCWgPQwiG4/kMqDf0v5SGlFKUaBVLMmgWR0Bwa9uk1uR+dX2UKGgGaAloD0MIOQ68Wu7M+r+UhpRSlGgVSzJoFkdAcGntMwlByHV9lChoBmgJaA9DCJHUQsnklP2/lIaUUpRoFUsyaBZHQHB3hPGhmGx1fZQoaAZoCWgPQwgG1nH8UOn2v5SGlFKUaBVLMmgWR0BwdZ4SpR4ydX2UKGgGaAloD0MIcM0d/S/X/b+UhpRSlGgVSzJoFkdAcHOwVj7Q9nV9lChoBmgJaA9DCB1yM9yAT/2/lIaUUpRoFUsyaBZHQHBxwWnCO3l1fZQoaAZoCWgPQwgr+64I/nf+v5SGlFKUaBVLMmgWR0Bwfy19fCyhdX2UKGgGaAloD0MI5NpQMc7f+7+UhpRSlGgVSzJoFkdAcH1G2TgVGnV9lChoBmgJaA9DCJs90AoM2fy/lIaUUpRoFUsyaBZHQHB7WiDdxhl1fZQoaAZoCWgPQwjshm2LMtv5v5SGlFKUaBVLMmgWR0BweWjM3ZPEdX2UKGgGaAloD0MIIAw89x4u/r+UhpRSlGgVSzJoFkdAcIbGiHqNZXV9lChoBmgJaA9DCEKWBRN/1P2/lIaUUpRoFUsyaBZHQHCE4pc5bQl1fZQoaAZoCWgPQwh3aFiMuhb3v5SGlFKUaBVLMmgWR0BwgvcqOLiudX2UKGgGaAloD0MIms+52/US+b+UhpRSlGgVSzJoFkdAcIEIZqEeyXV9lChoBmgJaA9DCKdc4V0u4v+/lIaUUpRoFUsyaBZHQHCOmzjWCmN1fZQoaAZoCWgPQwgPKQZINMH2v5SGlFKUaBVLMmgWR0BwjLc580DVdX2UKGgGaAloD0MIx/FDpRGz+7+UhpRSlGgVSzJoFkdAcIrKU3XI2nV9lChoBmgJaA9DCHLhQEgWMP6/lIaUUpRoFUsyaBZHQHCI2tlqagF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (793 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.4320805043564178, "std_reward": 0.4536031657434488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T18:13:12.181697"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:385d2ac8e652cc3c250f49b480b93a227ebd90b4324bcda4ecc94eb522802a36
|
3 |
+
size 2381
|