Gaivoronsky
commited on
Commit
·
a5194a1
1
Parent(s):
4beb7e1
Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1285.86 +/- 76.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01c42cae34c5f44c121e0ef75a709f5cd180a505429d7cfc7ec4252d3e073141
|
3 |
+
size 129348
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f386c928f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f386c929000>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f386c929090>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f386c929120>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f386c9291b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f386c929240>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f386c9292d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f386c929360>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f386c9293f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f386c929480>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f386c929510>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f386c9295a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f386c921340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684938326803392933,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2FsZXgvUHljaGFybVByb2plY3RzL1JML3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9hbGV4L1B5Y2hhcm1Qcm9qZWN0cy9STC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIk2Nz+ANbi/VJgTv9XRPz9qh9++J5YePtpLM798ys+/KrxSP5GSBcBiX7Q/7jOyv789pr8jb4o+vsqlPoA2B792n6+/UlmMvVcTij9cdW481mbEP7R8KMBWkBM/duTLP4dpi78xxNc+e+f8PqYKZb83R2Y/QdULQPyo5b/pz44/fhbRP9BH7j05Mu0/dfwLwIWKCz96Mpc/YG3Pvg04/D9wvqE/7vviPBfuPj8ALCq99yqcPzcaQ7zwl4U/Cx9oP0+/Db+vjJ8/lPj/veNB+7+HaYu/Mt4XwHvn/D6mCmW/mdbOvIX47b/+X9m//e1XP2Ve0L48wHu+FfP7PulSWb/MsdC+yh++PtcQZ7+9RLA/4dosP6Hdh77pnT0/a09vPNlUvT+/pnk7DnrMO4UlOL7xLtu945nzP8IhSr9yZC7Ah2mLvzLeF8B75/w+pgplv6glar8FvHG/wpqvPUBfOT8OGf09YwmvP/ijgj+YGKe/HPIgvyAEqj5QZJS/wxq0Prq1l74feYg/5oRRPh+oHD/OF6s/wUQJvV5vfj+fErS+S8k9P0ZQYj45Rz4/SKIWP4dpi78xxNc+e+f8PtIQjz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAgAAW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn7u+PAAAAAAmnP+/AAAAAFUplT0AAAAAxuP+PwAAAADfiFq9AAAAADwzAEAAAAAAQTilPQAAAADOt+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8piNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIUztL0AAAAAOLP5vwAAAAAWoUS9AAAAAEM/+D8AAAAADvYTPQAAAACozvQ/AAAAAEE8ib0AAAAAYOjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiUmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICK+gG+AAAAAJyyAMAAAAAAosCuvQAAAADEG9s/AAAAABx5xr0AAAAAnCMBQAAAAACoVg4+AAAAACjc3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8nI42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5q0RvgAAAAC/A/i/AAAAAOpBAj4AAAAAuTb/PwAAAAAz9u08AAAAAA0H8z8AAAAAur79PQAAAAA0GOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIdl9XtBv76MAWyUTegDjAF0lEdAnJBKRhc7hnV9lChoBkdAgyLAbIcR2GgHTegDaAhHQJyVILKFIup1fZQoaAZHQJpSBBfKISFoB03oA2gIR0Ccl41IRRMwdX2UKGgGR0CSf61dxAB1aAdN6ANoCEdAnJx9LcsUZnV9lChoBkdAmGBJEDyOJmgHTegDaAhHQJyeMEbHZK51fZQoaAZHQI0m8R+SbH9oB03oA2gIR0Ccowhky1u0dX2UKGgGR0Ca31LVWjoIaAdN6ANoCEdAnKV0C/47BHV9lChoBkdAnEqpTAFgUmgHTegDaAhHQJyqckeIVM51fZQoaAZHQJclr9hqj8FoB03oA2gIR0CcrB5I6KcedX2UKGgGR0CYzjfAbhm5aAdN6ANoCEdAnLDtG/etS3V9lChoBkdAm2en5BTn72gHTegDaAhHQJyzXS9du511fZQoaAZHQJtN/YzzmOloB03oA2gIR0CcuK0WuX/pdX2UKGgGR0Ca9qkPtlZpaAdN6ANoCEdAnLpqfFrEcnV9lChoBkdAmZtAsbvPT2gHTegDaAhHQJy/bbL2YfJ1fZQoaAZHQJwHB3ljmS1oB03oA2gIR0CcwfteUpuudX2UKGgGR0CbxLZb6guiaAdN6ANoCEdAnMcwKrq+rXV9lChoBkdAmmio2jwhGGgHTegDaAhHQJzI825xzaN1fZQoaAZHQJWeQ7A+IM1oB03oA2gIR0CczgFyaNModX2UKGgGR0CbWQqHGjsVaAdN6ANoCEdAnNCM6vJRwnV9lChoBkdAnS6M63iJf2gHTegDaAhHQJzVne1rqMZ1fZQoaAZHQHZ1GfseGPBoB03oA2gIR0Cc10lg+hXbdX2UKGgGR0Cbb4f029+PaAdN6ANoCEdAnNwSUkfLcXV9lChoBkdAmUf4ikfs/2gHTegDaAhHQJzefnied091fZQoaAZHQIP5yNsFdLRoB03oA2gIR0Cc43OX3QD3dX2UKGgGR0CYUEhFmWdFaAdN6ANoCEdAnOUZx3mmtXV9lChoBkdAik039JjDsWgHTegDaAhHQJzp4vRJEpl1fZQoaAZHQI++914gRsdoB03oA2gIR0Cc7Efg75mAdX2UKGgGR0CXVyTvy9VWaAdN6ANoCEdAnPEyZnctXnV9lChoBkdAmj8/OdGy5mgHTegDaAhHQJzy2LNwBHV1fZQoaAZHQJFF759E1EVoB03oA2gIR0Cc9+HY6GQCdX2UKGgGR0CZIhaa1Cw9aAdN6ANoCEdAnPps9wFTvXV9lChoBkdAmr075Ec81WgHTegDaAhHQJz/VCdBjWl1fZQoaAZHQHfJ6wdKdx1oB03oA2gIR0CdAPpfQa73dX2UKGgGR0CQ6KKISDh+aAdN6ANoCEdAnQXGI9C/oXV9lChoBkdAkVkbvgFX72gHTegDaAhHQJ0IKhYeT3Z1fZQoaAZHQIyi1oUSIxhoB03oA2gIR0CdDRA/LTx5dX2UKGgGR0CbPjEZR8+iaAdN6ANoCEdAnQ65TIeYD3V9lChoBkdAlqsrUPQOWmgHTegDaAhHQJ0T3S5RTCN1fZQoaAZHQJfWlEKE385oB03oA2gIR0CdFm6K+BYndX2UKGgGR0CZQyC66J66aAdN6ANoCEdAnRuq7VawEHV9lChoBkdAkiSVJtix3WgHTegDaAhHQJ0dbOZ9d/t1fZQoaAZHQJfBs30f5k9oB03oA2gIR0CdImOavzOHdX2UKGgGR0CCuvYFJQLvaAdN6ANoCEdAnSTisbNr03V9lChoBkdAf+scz67/XGgHTegDaAhHQJ0qD4oJAt51fZQoaAZHQIAn70163RZoB03oA2gIR0CdK86dDpkgdX2UKGgGR0B/7Zdv863iaAdN6ANoCEdAnTDYakyk9HV9lChoBkdAgUz49Pk7wWgHTegDaAhHQJ0zXHS4OMF1fZQoaAZHQJhcyKuSwGJoB03oA2gIR0CdOHkfLcKxdX2UKGgGR0CB3cml67d0aAdN6ANoCEdAnTo3XmNipnV9lChoBkdAh368RlHz6WgHTegDaAhHQJ0/N6By0a91fZQoaAZHQJb1veUILPVoB03oA2gIR0CdQbk7OmiydX2UKGgGR0CblPFgUlAvaAdN6ANoCEdAnUbiu2Zy/HV9lChoBkdAkg5ZzcRDkWgHTegDaAhHQJ1ImglF+d91fZQoaAZHQIWn+a2F36hoB03oA2gIR0CdTXMdcSoPdX2UKGgGR0CVF5uvllshaAdN6ANoCEdAnU/fReC04XV9lChoBkdAly69zwMH8mgHTegDaAhHQJ1U0NkOI691fZQoaAZHQJEaOidrftRoB03oA2gIR0CdVnUT+NtJdX2UKGgGR0CUDN+NtIkJaAdN6ANoCEdAnVtkBfa6BnV9lChoBkdAi2jVp9JBgWgHTegDaAhHQJ1d5THbRF91fZQoaAZHQHo5vD+BH09oB03oA2gIR0CdYyItDlYEdX2UKGgGR0CE3UIoE0SAaAdN6ANoCEdAnWTZQxesxXV9lChoBkdAhsYcxbjcVWgHTegDaAhHQJ1p09dNWU91fZQoaAZHQJD6r+l0o0BoB03oA2gIR0CdbFSqlxffdX2UKGgGR0CC4FOPeYUnaAdN6ANoCEdAnXFuw9q1xHV9lChoBkdAktK0l7dBSmgHTegDaAhHQJ1zKby6MBJ1fZQoaAZHQIsG6zLOiWVoB03oA2gIR0CdeCJYT0xudX2UKGgGR0CPXi3nZCfIaAdN6ANoCEdAnXqluNxVAHV9lChoBkdAahsVM23rlmgHTegDaAhHQJ1/3aoMrmR1fZQoaAZHQIbqBHEuQIVoB03oA2gIR0CdgaIVuaWpdX2UKGgGR0CHzMpCrtE5aAdN6ANoCEdAnYawoG6f8XV9lChoBkdAj18M7U5MlGgHTegDaAhHQJ2JOfChvit1fZQoaAZHQH1tD8gpz91oB03oA2gIR0Cdjm2AoXsPdX2UKGgGR0CRQnj2SMcZaAdN6ANoCEdAnZAvmDDjznV9lChoBkdAbAL1X/5tWWgHTegDaAhHQJ2VNVNpM6B1fZQoaAZHQJGmyTeO4oZoB03oA2gIR0Cdl7bN8ma6dX2UKGgGR0CQC4tG/etTaAdN6ANoCEdAnZzd6LOzIHV9lChoBkdAe1wVclgMMWgHTegDaAhHQJ2enPyCnP51fZQoaAZHQHsa5mqYJE9oB03oA2gIR0Cdo6I+nqFAdX2UKGgGR0B8oUqLCN0eaAdN6ANoCEdAnaYUxyn1nXV9lChoBkdAjfMiFj/dZmgHTegDaAhHQJ2rPoLXtjV1fZQoaAZHQHU5jc2zfJpoB03oA2gIR0CdrPwNLDhtdX2UKGgGR0CRoNYGMXJpaAdN6ANoCEdAnbHnHBDXv3V9lChoBkdAkxtuizsyBWgHTegDaAhHQJ20V0vGp/B1fZQoaAZHQJR/sawUxmFoB03oA2gIR0CduVwKSgXedX2UKGgGR0CWUeeyiVSoaAdN6ANoCEdAnbsTEvTPSnV9lChoBkdAk/4pJPIn0GgHTegDaAhHQJ2/2iTMaCN1fZQoaAZHQJEHyISDh99oB03oA2gIR0Cdwj3bVSXMdX2UKGgGR0CThhOXVsk6aAdN6ANoCEdAncc4n4O+ZnV9lChoBkdAkORDyJ9Ao2gHTegDaAhHQJ3I5YlpoK51fZQoaAZHQInN2/N7jT9oB03oA2gIR0CdzbJlar3kdX2UKGgGR0CS71lJ6IFeaAdN6ANoCEdAndAWznied3V9lChoBkdAlf0EelsP8WgHTegDaAhHQJ3U9HkLhJl1fZQoaAZHQJcJh1mrbQFoB03oA2gIR0Cd1o71qWTpdX2UKGgGR0CUWhZ5Rjz7aAdN6ANoCEdAndspEDyOJnV9lChoBkdAkXj7jLjgh2gHTegDaAhHQJ3dhguyu6p1fZQoaAZHQIj9qH9FWn1oB03oA2gIR0Cd4l1JUYKqdX2UKGgGR0CKfviUgSvlaAdN6ANoCEdAneP4Ma0hNnV9lChoBkdAlIXcju8brGgHTegDaAhHQJ3ol+c6Nl11fZQoaAZHQJBVBk8RtgtoB03oA2gIR0Cd6usf7rLRdX2UKGgGR0CNLev8qFyraAdN6ANoCEdAne+xgqmTDHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c32fd519c0d3d3cdbea84ed1166b1aa1e379e28a599ec92510a482e931d9aed7
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a60af48395bcd1cf0a003aafe20ad7ad13672e6610ac4e18c9b007afebb7a8
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-42-generic-x86_64-with-glibc2.35 # 43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f386c928f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f386c929000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f386c929090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f386c929120>", "_build": "<function ActorCriticPolicy._build at 0x7f386c9291b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f386c929240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f386c9292d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f386c929360>", "_predict": "<function ActorCriticPolicy._predict at 0x7f386c9293f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f386c929480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f386c929510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f386c9295a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f386c921340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684938326803392933, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2FsZXgvUHljaGFybVByb2plY3RzL1JML3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9hbGV4L1B5Y2hhcm1Qcm9qZWN0cy9STC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIk2Nz+ANbi/VJgTv9XRPz9qh9++J5YePtpLM798ys+/KrxSP5GSBcBiX7Q/7jOyv789pr8jb4o+vsqlPoA2B792n6+/UlmMvVcTij9cdW481mbEP7R8KMBWkBM/duTLP4dpi78xxNc+e+f8PqYKZb83R2Y/QdULQPyo5b/pz44/fhbRP9BH7j05Mu0/dfwLwIWKCz96Mpc/YG3Pvg04/D9wvqE/7vviPBfuPj8ALCq99yqcPzcaQ7zwl4U/Cx9oP0+/Db+vjJ8/lPj/veNB+7+HaYu/Mt4XwHvn/D6mCmW/mdbOvIX47b/+X9m//e1XP2Ve0L48wHu+FfP7PulSWb/MsdC+yh++PtcQZ7+9RLA/4dosP6Hdh77pnT0/a09vPNlUvT+/pnk7DnrMO4UlOL7xLtu945nzP8IhSr9yZC7Ah2mLvzLeF8B75/w+pgplv6glar8FvHG/wpqvPUBfOT8OGf09YwmvP/ijgj+YGKe/HPIgvyAEqj5QZJS/wxq0Prq1l74feYg/5oRRPh+oHD/OF6s/wUQJvV5vfj+fErS+S8k9P0ZQYj45Rz4/SKIWP4dpi78xxNc+e+f8PtIQjz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAgAAW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn7u+PAAAAAAmnP+/AAAAAFUplT0AAAAAxuP+PwAAAADfiFq9AAAAADwzAEAAAAAAQTilPQAAAADOt+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8piNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIUztL0AAAAAOLP5vwAAAAAWoUS9AAAAAEM/+D8AAAAADvYTPQAAAACozvQ/AAAAAEE8ib0AAAAAYOjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiUmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICK+gG+AAAAAJyyAMAAAAAAosCuvQAAAADEG9s/AAAAABx5xr0AAAAAnCMBQAAAAACoVg4+AAAAACjc3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8nI42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5q0RvgAAAAC/A/i/AAAAAOpBAj4AAAAAuTb/PwAAAAAz9u08AAAAAA0H8z8AAAAAur79PQAAAAA0GOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIdl9XtBv76MAWyUTegDjAF0lEdAnJBKRhc7hnV9lChoBkdAgyLAbIcR2GgHTegDaAhHQJyVILKFIup1fZQoaAZHQJpSBBfKISFoB03oA2gIR0Ccl41IRRMwdX2UKGgGR0CSf61dxAB1aAdN6ANoCEdAnJx9LcsUZnV9lChoBkdAmGBJEDyOJmgHTegDaAhHQJyeMEbHZK51fZQoaAZHQI0m8R+SbH9oB03oA2gIR0Ccowhky1u0dX2UKGgGR0Ca31LVWjoIaAdN6ANoCEdAnKV0C/47BHV9lChoBkdAnEqpTAFgUmgHTegDaAhHQJyqckeIVM51fZQoaAZHQJclr9hqj8FoB03oA2gIR0CcrB5I6KcedX2UKGgGR0CYzjfAbhm5aAdN6ANoCEdAnLDtG/etS3V9lChoBkdAm2en5BTn72gHTegDaAhHQJyzXS9du511fZQoaAZHQJtN/YzzmOloB03oA2gIR0CcuK0WuX/pdX2UKGgGR0Ca9qkPtlZpaAdN6ANoCEdAnLpqfFrEcnV9lChoBkdAmZtAsbvPT2gHTegDaAhHQJy/bbL2YfJ1fZQoaAZHQJwHB3ljmS1oB03oA2gIR0CcwfteUpuudX2UKGgGR0CbxLZb6guiaAdN6ANoCEdAnMcwKrq+rXV9lChoBkdAmmio2jwhGGgHTegDaAhHQJzI825xzaN1fZQoaAZHQJWeQ7A+IM1oB03oA2gIR0CczgFyaNModX2UKGgGR0CbWQqHGjsVaAdN6ANoCEdAnNCM6vJRwnV9lChoBkdAnS6M63iJf2gHTegDaAhHQJzVne1rqMZ1fZQoaAZHQHZ1GfseGPBoB03oA2gIR0Cc10lg+hXbdX2UKGgGR0Cbb4f029+PaAdN6ANoCEdAnNwSUkfLcXV9lChoBkdAmUf4ikfs/2gHTegDaAhHQJzefnied091fZQoaAZHQIP5yNsFdLRoB03oA2gIR0Cc43OX3QD3dX2UKGgGR0CYUEhFmWdFaAdN6ANoCEdAnOUZx3mmtXV9lChoBkdAik039JjDsWgHTegDaAhHQJzp4vRJEpl1fZQoaAZHQI++914gRsdoB03oA2gIR0Cc7Efg75mAdX2UKGgGR0CXVyTvy9VWaAdN6ANoCEdAnPEyZnctXnV9lChoBkdAmj8/OdGy5mgHTegDaAhHQJzy2LNwBHV1fZQoaAZHQJFF759E1EVoB03oA2gIR0Cc9+HY6GQCdX2UKGgGR0CZIhaa1Cw9aAdN6ANoCEdAnPps9wFTvXV9lChoBkdAmr075Ec81WgHTegDaAhHQJz/VCdBjWl1fZQoaAZHQHfJ6wdKdx1oB03oA2gIR0CdAPpfQa73dX2UKGgGR0CQ6KKISDh+aAdN6ANoCEdAnQXGI9C/oXV9lChoBkdAkVkbvgFX72gHTegDaAhHQJ0IKhYeT3Z1fZQoaAZHQIyi1oUSIxhoB03oA2gIR0CdDRA/LTx5dX2UKGgGR0CbPjEZR8+iaAdN6ANoCEdAnQ65TIeYD3V9lChoBkdAlqsrUPQOWmgHTegDaAhHQJ0T3S5RTCN1fZQoaAZHQJfWlEKE385oB03oA2gIR0CdFm6K+BYndX2UKGgGR0CZQyC66J66aAdN6ANoCEdAnRuq7VawEHV9lChoBkdAkiSVJtix3WgHTegDaAhHQJ0dbOZ9d/t1fZQoaAZHQJfBs30f5k9oB03oA2gIR0CdImOavzOHdX2UKGgGR0CCuvYFJQLvaAdN6ANoCEdAnSTisbNr03V9lChoBkdAf+scz67/XGgHTegDaAhHQJ0qD4oJAt51fZQoaAZHQIAn70163RZoB03oA2gIR0CdK86dDpkgdX2UKGgGR0B/7Zdv863iaAdN6ANoCEdAnTDYakyk9HV9lChoBkdAgUz49Pk7wWgHTegDaAhHQJ0zXHS4OMF1fZQoaAZHQJhcyKuSwGJoB03oA2gIR0CdOHkfLcKxdX2UKGgGR0CB3cml67d0aAdN6ANoCEdAnTo3XmNipnV9lChoBkdAh368RlHz6WgHTegDaAhHQJ0/N6By0a91fZQoaAZHQJb1veUILPVoB03oA2gIR0CdQbk7OmiydX2UKGgGR0CblPFgUlAvaAdN6ANoCEdAnUbiu2Zy/HV9lChoBkdAkg5ZzcRDkWgHTegDaAhHQJ1ImglF+d91fZQoaAZHQIWn+a2F36hoB03oA2gIR0CdTXMdcSoPdX2UKGgGR0CVF5uvllshaAdN6ANoCEdAnU/fReC04XV9lChoBkdAly69zwMH8mgHTegDaAhHQJ1U0NkOI691fZQoaAZHQJEaOidrftRoB03oA2gIR0CdVnUT+NtJdX2UKGgGR0CUDN+NtIkJaAdN6ANoCEdAnVtkBfa6BnV9lChoBkdAi2jVp9JBgWgHTegDaAhHQJ1d5THbRF91fZQoaAZHQHo5vD+BH09oB03oA2gIR0CdYyItDlYEdX2UKGgGR0CE3UIoE0SAaAdN6ANoCEdAnWTZQxesxXV9lChoBkdAhsYcxbjcVWgHTegDaAhHQJ1p09dNWU91fZQoaAZHQJD6r+l0o0BoB03oA2gIR0CdbFSqlxffdX2UKGgGR0CC4FOPeYUnaAdN6ANoCEdAnXFuw9q1xHV9lChoBkdAktK0l7dBSmgHTegDaAhHQJ1zKby6MBJ1fZQoaAZHQIsG6zLOiWVoB03oA2gIR0CdeCJYT0xudX2UKGgGR0CPXi3nZCfIaAdN6ANoCEdAnXqluNxVAHV9lChoBkdAahsVM23rlmgHTegDaAhHQJ1/3aoMrmR1fZQoaAZHQIbqBHEuQIVoB03oA2gIR0CdgaIVuaWpdX2UKGgGR0CHzMpCrtE5aAdN6ANoCEdAnYawoG6f8XV9lChoBkdAj18M7U5MlGgHTegDaAhHQJ2JOfChvit1fZQoaAZHQH1tD8gpz91oB03oA2gIR0Cdjm2AoXsPdX2UKGgGR0CRQnj2SMcZaAdN6ANoCEdAnZAvmDDjznV9lChoBkdAbAL1X/5tWWgHTegDaAhHQJ2VNVNpM6B1fZQoaAZHQJGmyTeO4oZoB03oA2gIR0Cdl7bN8ma6dX2UKGgGR0CQC4tG/etTaAdN6ANoCEdAnZzd6LOzIHV9lChoBkdAe1wVclgMMWgHTegDaAhHQJ2enPyCnP51fZQoaAZHQHsa5mqYJE9oB03oA2gIR0Cdo6I+nqFAdX2UKGgGR0B8oUqLCN0eaAdN6ANoCEdAnaYUxyn1nXV9lChoBkdAjfMiFj/dZmgHTegDaAhHQJ2rPoLXtjV1fZQoaAZHQHU5jc2zfJpoB03oA2gIR0CdrPwNLDhtdX2UKGgGR0CRoNYGMXJpaAdN6ANoCEdAnbHnHBDXv3V9lChoBkdAkxtuizsyBWgHTegDaAhHQJ20V0vGp/B1fZQoaAZHQJR/sawUxmFoB03oA2gIR0CduVwKSgXedX2UKGgGR0CWUeeyiVSoaAdN6ANoCEdAnbsTEvTPSnV9lChoBkdAk/4pJPIn0GgHTegDaAhHQJ2/2iTMaCN1fZQoaAZHQJEHyISDh99oB03oA2gIR0Cdwj3bVSXMdX2UKGgGR0CThhOXVsk6aAdN6ANoCEdAncc4n4O+ZnV9lChoBkdAkORDyJ9Ao2gHTegDaAhHQJ3I5YlpoK51fZQoaAZHQInN2/N7jT9oB03oA2gIR0CdzbJlar3kdX2UKGgGR0CS71lJ6IFeaAdN6ANoCEdAndAWznied3V9lChoBkdAlf0EelsP8WgHTegDaAhHQJ3U9HkLhJl1fZQoaAZHQJcJh1mrbQFoB03oA2gIR0Cd1o71qWTpdX2UKGgGR0CUWhZ5Rjz7aAdN6ANoCEdAndspEDyOJnV9lChoBkdAkXj7jLjgh2gHTegDaAhHQJ3dhguyu6p1fZQoaAZHQIj9qH9FWn1oB03oA2gIR0Cd4l1JUYKqdX2UKGgGR0CKfviUgSvlaAdN6ANoCEdAneP4Ma0hNnV9lChoBkdAlIXcju8brGgHTegDaAhHQJ3ol+c6Nl11fZQoaAZHQJBVBk8RtgtoB03oA2gIR0Cd6usf7rLRdX2UKGgGR0CNLev8qFyraAdN6ANoCEdAne+xgqmTDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-42-generic-x86_64-with-glibc2.35 # 43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1285.8630025933496, "std_reward": 76.25016299264354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-24T17:55:03.593221"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0c2bb7b25ce15143561bb6fc6fe383df704c1ef25834148aca99ddadcb8281f
|
3 |
+
size 2176
|