update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: bart-base-cnn-xsum-swe
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bart-base-cnn-xsum-swe
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.1895
|
20 |
+
- Rouge1: 31.1693
|
21 |
+
- Rouge2: 12.7388
|
22 |
+
- Rougel: 25.7655
|
23 |
+
- Rougelsum: 25.7862
|
24 |
+
- Gen Len: 19.7733
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
+
- total_train_batch_size: 32
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 8
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
59 |
+
| 2.3079 | 1.0 | 6375 | 2.1998 | 29.7845 | 11.125 | 24.3181 | 24.3562 | 19.7119 |
|
60 |
+
| 2.064 | 2.0 | 12750 | 2.1245 | 30.4641 | 11.7383 | 25.0254 | 25.0633 | 19.653 |
|
61 |
+
| 1.8647 | 3.0 | 19125 | 2.1005 | 30.8903 | 12.2265 | 25.3996 | 25.4252 | 19.7457 |
|
62 |
+
| 1.7098 | 4.0 | 25500 | 2.1073 | 31.1173 | 12.4124 | 25.6553 | 25.6913 | 19.7546 |
|
63 |
+
| 1.5761 | 5.0 | 31875 | 2.1227 | 30.9586 | 12.4907 | 25.5474 | 25.5745 | 19.7675 |
|
64 |
+
| 1.4618 | 6.0 | 38250 | 2.1484 | 31.115 | 12.6546 | 25.684 | 25.7151 | 19.7456 |
|
65 |
+
| 1.3643 | 7.0 | 44625 | 2.1705 | 31.2225 | 12.8069 | 25.7901 | 25.8154 | 19.7842 |
|
66 |
+
| 1.2944 | 8.0 | 51000 | 2.1895 | 31.1693 | 12.7388 | 25.7655 | 25.7862 | 19.7733 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.22.1
|
72 |
+
- Pytorch 1.12.1+cu113
|
73 |
+
- Datasets 2.5.1
|
74 |
+
- Tokenizers 0.12.1
|