Model trained using Optuna for hyperparameter tuning
Browse files- README.md +37 -0
- config.json +1 -0
- lander_optuna_2.zip +3 -0
- lander_optuna_2/_stable_baselines3_version +1 -0
- lander_optuna_2/data +95 -0
- lander_optuna_2/policy.optimizer.pth +3 -0
- lander_optuna_2/policy.pth +3 -0
- lander_optuna_2/pytorch_variables.pth +3 -0
- lander_optuna_2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 288.78 +/- 21.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2e4f6a790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2e4f6a820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2e4f6a8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2e4f6a940>", "_build": "<function ActorCriticPolicy._build at 0x7fa2e4f6a9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2e4f6aa60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2e4f6aaf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2e4f6ab80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2e4f6ac10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2e4f6aca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2e4f6ad30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2e4f6adc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa2e4f67360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678124130664406078, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Pl73MPak+sPyXPKESLr90hd29ffHgPAAAAAAAAAAAZoZqOsLpuj8kJQQ8U0qIPZaWDjxV8FA8AAAAAAAAAAAmXeW9WJq7PvReoj0KTRm//77gvc4oxj0AAAAAAAAAAA16oj0UxLi6qf6JvT6p9jx05i88/lXWvQAAAAAAAAAAs7tJPeyBvLlUmTi0zacgr0Gevjs2bZAzAACAPwAAgD8thyA+e99PP0uGWz5d8kC/a/e9PtOn67wAAAAAAAAAAFqt4z3sNMe79cKpviWEB74U3d27eClXPwAAgD8AAIA/wEmWvYdCGT5ICiw+VDzlvvzGfb36Y4o9AAAAAAAAAACaSWC9eySFunpOKDxfQ5A8HDdyO4gUer0AAIA/AACAP80fmjwUdrM7xs4qvc7Jor5j4Ci9rUcevAAAAAAAAAAAk4huvgCeNT/Ag1W88CUMv1yrtL5RFAg+AAAAAAAAAAAzuxI7SVO5PwLmZz1exL0+bcEmu33JT7wAAAAAAAAAAHrKDz7DVFY/YsiCPnRGSr8e86A+llXQPAAAAAAAAAAAzSUKvR8F+LmCmI48maGXNgMP/rrQyZI1AAAAAAAAAAC6xA++iWFUP/VpCr4OtVK/rnlhvlrnXjwAAAAAAAAAAGYE0TwVNTQ/TfsaPf7ab79KR1o9zdSzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8mH2si3fcECUhpRSlIwBbJRLpowBdJRHQILx/jXFtKt1fZQoaAZoCWgPQwhblxqhX9VwQJSGlFKUaBVLqmgWR0CC8igUUO/ddX2UKGgGaAloD0MIMUROX4/ycECUhpRSlGgVS7toFkdAgvNo+GGmDXV9lChoBmgJaA9DCKyPh767THJAlIaUUpRoFUu3aBZHQILzkunMt9R1fZQoaAZoCWgPQwidgvxsJD5wQJSGlFKUaBVLimgWR0CC9CKEWZZ0dX2UKGgGaAloD0MI9b7xteeTcECUhpRSlGgVS6VoFkdAgvR1YQrc03V9lChoBmgJaA9DCG3+X3WkrHFAlIaUUpRoFUuYaBZHQIL0vYraufV1fZQoaAZoCWgPQwgZxXJLK3lzQJSGlFKUaBVLuWgWR0CC9WtlI3BIdX2UKGgGaAloD0MIcyzvqgeHckCUhpRSlGgVS8doFkdAgvaPY4ACGXV9lChoBmgJaA9DCPFHUWeuV3JAlIaUUpRoFUt+aBZHQIL3JBkZrHl1fZQoaAZoCWgPQwgczvxqDv5xQJSGlFKUaBVLxGgWR0CC+A29cry2dX2UKGgGaAloD0MIvFgYIifZcECUhpRSlGgVS5ZoFkdAgzA+GXXyy3V9lChoBmgJaA9DCH6rdeIypnNAlIaUUpRoFUvPaBZHQIMxVfu1F6R1fZQoaAZoCWgPQwiXHk31JOFyQJSGlFKUaBVLmmgWR0CDMWO4oZyddX2UKGgGaAloD0MIJA9EFilncECUhpRSlGgVS6xoFkdAgzGk3CKrJnV9lChoBmgJaA9DCKNWmL5XdnFAlIaUUpRoFUukaBZHQIMyM2m51/51fZQoaAZoCWgPQwico46Oq3lOQJSGlFKUaBVLS2gWR0CDMlsxfv4NdX2UKGgGaAloD0MINX7hleReckCUhpRSlGgVS5xoFkdAgzLHtfG+9XV9lChoBmgJaA9DCIbGE0EcGHJAlIaUUpRoFUuVaBZHQIMy4Kv3ai91fZQoaAZoCWgPQwixxAPKppZuQJSGlFKUaBVLkWgWR0CDMvN47ihndX2UKGgGaAloD0MIkgN2NTmGc0CUhpRSlGgVS8ZoFkdAgzNKslsxf3V9lChoBmgJaA9DCEWg+gdRjHNAlIaUUpRoFUvRaBZHQIMz5BX0Xgt1fZQoaAZoCWgPQwiYNEbraG5yQJSGlFKUaBVLo2gWR0CDNC68xsVMdX2UKGgGaAloD0MIgzRj0TQocUCUhpRSlGgVS8hoFkdAgzRjRc/t6XV9lChoBmgJaA9DCMwpATEJKnFAlIaUUpRoFUubaBZHQIM04tvn8sN1fZQoaAZoCWgPQwj7PEZ5ZrJyQJSGlFKUaBVLw2gWR0CDNP0nPVurdX2UKGgGaAloD0MIv9cQHJeBc0CUhpRSlGgVS7toFkdAgzXrmp2lmHV9lChoBmgJaA9DCFFrmndc1XFAlIaUUpRoFUuHaBZHQIM3ue8PFvR1fZQoaAZoCWgPQwiM9KJ2/x5yQJSGlFKUaBVLvmgWR0CDODYoRZlndX2UKGgGaAloD0MIPDCA8CEqckCUhpRSlGgVS6poFkdAgzhnogV45nV9lChoBmgJaA9DCCCcTx1rHHJAlIaUUpRoFUutaBZHQIM4lUZNwit1fZQoaAZoCWgPQwj4wfnUMT9wQJSGlFKUaBVLlWgWR0CDORDF6zE8dX2UKGgGaAloD0MILpCg+HGfckCUhpRSlGgVS7ZoFkdAgzk/BN21UnV9lChoBmgJaA9DCIz0onZ/C3JAlIaUUpRoFUuFaBZHQIM5fB1s+FF1fZQoaAZoCWgPQwhZi08BsFhyQJSGlFKUaBVLsmgWR0CDOhRzijtYdX2UKGgGaAloD0MI46YGmk99cECUhpRSlGgVS5BoFkdAgzoxesxO+XV9lChoBmgJaA9DCGXG20rvGXJAlIaUUpRoFUuYaBZHQIM6uyiVSoB1fZQoaAZoCWgPQwhIqYQnNJ5zQJSGlFKUaBVLv2gWR0CDOsHeJpFkdX2UKGgGaAloD0MISicSTPXYckCUhpRSlGgVS8ZoFkdAgztnFo+OfnV9lChoBmgJaA9DCJlH/mBgmHJAlIaUUpRoFUueaBZHQIM7i8an7551fZQoaAZoCWgPQwibx2EwfwtDQJSGlFKUaBVLW2gWR0CDPBQQ+UyIdX2UKGgGaAloD0MIXJAtyxeHc0CUhpRSlGgVS7VoFkdAgzyEJBw++3V9lChoBmgJaA9DCA4V4/xNSXJAlIaUUpRoFUu4aBZHQIM9dS2phnd1fZQoaAZoCWgPQwhuTE9YYklxQJSGlFKUaBVLjWgWR0CDPqy6cy31dX2UKGgGaAloD0MIDmq/tZMFcUCUhpRSlGgVS6xoFkdAgz6+N96Tn3V9lChoBmgJaA9DCC82rRTCuXNAlIaUUpRoFUupaBZHQIM/IkgOjIt1fZQoaAZoCWgPQwgDYDyDRmdwQJSGlFKUaBVLk2gWR0CDPzDXOGCadX2UKGgGaAloD0MIJNQMqeJmcUCUhpRSlGgVS6hoFkdAgz90M5OrQ3V9lChoBmgJaA9DCMYYWMfxb3BAlIaUUpRoFUuYaBZHQINBCdFvybx1fZQoaAZoCWgPQwjDR8SUCLNxQJSGlFKUaBVLxmgWR0CDQbWmxdIHdX2UKGgGaAloD0MIFVJ+Um32ckCUhpRSlGgVS75oFkdAg0ISIYWLxnV9lChoBmgJaA9DCIOhDivc93JAlIaUUpRoFUvEaBZHQINCgZhrnDB1fZQoaAZoCWgPQwh5lEp4AuVxQJSGlFKUaBVLu2gWR0CDQ3A4XGfgdX2UKGgGaAloD0MI+tNGdXobdECUhpRSlGgVS9FoFkdAg0O5AY51eXV9lChoBmgJaA9DCKDgYkWNKXFAlIaUUpRoFUunaBZHQIND28kD6nB1fZQoaAZoCWgPQwjtgVZgyNZHQJSGlFKUaBVLa2gWR0CDQ/h3JPqLdX2UKGgGaAloD0MIIxKFljWwc0CUhpRSlGgVS8hoFkdAg0QwVTJhfHV9lChoBmgJaA9DCENZ+PpaRnBAlIaUUpRoFUucaBZHQINEY4ffXPJ1fZQoaAZoCWgPQwhr71NVaLFyQJSGlFKUaBVLlWgWR0CDhGO7QLNOdX2UKGgGaAloD0MIvi1Yqovfb0CUhpRSlGgVS6ZoFkdAg4R4A0bcXXV9lChoBmgJaA9DCG/0MR8QSnBAlIaUUpRoFUuxaBZHQIOE7HsC1Z11fZQoaAZoCWgPQwjYKVYNwkZzQJSGlFKUaBVLkGgWR0CDhgCo0hvBdX2UKGgGaAloD0MIyVUsfhP1ckCUhpRSlGgVS8poFkdAg4awu/UONHV9lChoBmgJaA9DCMqIC0CjbEBAlIaUUpRoFUt1aBZHQIOHnJV81Gd1fZQoaAZoCWgPQwh7pMFtLQNxQJSGlFKUaBVLo2gWR0CDh/27FsHjdX2UKGgGaAloD0MIBg39E5yKc0CUhpRSlGgVS7poFkdAg4i/oq0+knV9lChoBmgJaA9DCIgs0sS7NHNAlIaUUpRoFUuqaBZHQIOIzEit7rt1fZQoaAZoCWgPQwizXDY6Z+pyQJSGlFKUaBVLqmgWR0CDig5sCT2WdX2UKGgGaAloD0MIavZAKzAEcUCUhpRSlGgVS55oFkdAg4oDnvDxb3V9lChoBmgJaA9DCNrhr8laE3RAlIaUUpRoFUujaBZHQIOKgy9EkSp1fZQoaAZoCWgPQwhdv2A3bEVzQJSGlFKUaBVLvGgWR0CDiqrDqGDddX2UKGgGaAloD0MIzt+EQgRqckCUhpRSlGgVS8VoFkdAg4vghr30w3V9lChoBmgJaA9DCG0eh8E8wHBAlIaUUpRoFUucaBZHQIOM5IatLct1fZQoaAZoCWgPQwgUsB2MWKxyQJSGlFKUaBVLumgWR0CDjdjz7MxHdX2UKGgGaAloD0MITYI3pJGCcUCUhpRSlGgVS8hoFkdAg46j1oQFtHV9lChoBmgJaA9DCHLD76abSHFAlIaUUpRoFUu4aBZHQIOPZi/fwZx1fZQoaAZoCWgPQwiI83ACk7JwQJSGlFKUaBVLkmgWR0CDkDrAP/aQdX2UKGgGaAloD0MIVRSvsvaqckCUhpRSlGgVS8doFkdAg5DU7Sy+pXV9lChoBmgJaA9DCE34pX6eSXBAlIaUUpRoFUujaBZHQIORIpUgjhV1fZQoaAZoCWgPQwhAvRk13xZyQJSGlFKUaBVLhmgWR0CDkaAMlTm5dX2UKGgGaAloD0MIJ4bkZGKAcUCUhpRSlGgVS8NoFkdAg5GV/c32mHV9lChoBmgJaA9DCHe9NEVAVnJAlIaUUpRoFUutaBZHQIOS+T7l7t11fZQoaAZoCWgPQwid9L7x9VZ0QJSGlFKUaBVL1mgWR0CDku4yXUpedX2UKGgGaAloD0MI66pALUYOc0CUhpRSlGgVS79oFkdAg5Papo9LYnV9lChoBmgJaA9DCE33OqmvkHFAlIaUUpRoFUu3aBZHQIOT9EkSmIl1fZQoaAZoCWgPQwhevvVhvY9yQJSGlFKUaBVLuWgWR0CDlShQm/nGdX2UKGgGaAloD0MIV8wIb4+fc0CUhpRSlGgVS9doFkdAg5e6nR9gGHV9lChoBmgJaA9DCEdUqG6uD3JAlIaUUpRoFUvFaBZHQIOXyZDzAet1fZQoaAZoCWgPQwhcABqli7JxQJSGlFKUaBVLm2gWR0CDmBghKUV0dX2UKGgGaAloD0MI+RBUjR6vckCUhpRSlGgVS71oFkdAg5gtiYsunXV9lChoBmgJaA9DCDY656f4DHJAlIaUUpRoFUvBaBZHQIOZJXQtz0Z1fZQoaAZoCWgPQwhKfO4E+2tvQJSGlFKUaBVLlmgWR0CDmTnW8RL9dX2UKGgGaAloD0MIlumXiLeRc0CUhpRSlGgVS5toFkdAg5lz5wfhdnV9lChoBmgJaA9DCMtMaf3tUnJAlIaUUpRoFUuBaBZHQIOaWe4Cp3p1fZQoaAZoCWgPQwgXoG01qxlyQJSGlFKUaBVLvmgWR0CDmnM495hSdX2UKGgGaAloD0MI6ITQQRdic0CUhpRSlGgVTZ4DaBZHQIObl7KJVKh1fZQoaAZoCWgPQwgL1GLwcM1zQJSGlFKUaBVLz2gWR0CDm6IWxhUjdX2UKGgGaAloD0MIgzKNJtfqc0CUhpRSlGgVS69oFkdAg5vEmY0EYHV9lChoBmgJaA9DCHyeP21Uj3JAlIaUUpRoFUvJaBZHQIOc9Tzd1uB1fZQoaAZoCWgPQwi1cFmFTapyQJSGlFKUaBVLvGgWR0CDnTzTWoWIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3438, "n_steps": 512, "gamma": 0.997, "gae_lambda": 0.95, "ent_coef": 6.38e-06, "vf_coef": 0.5, "max_grad_norm": 0.31, "batch_size": 32, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
lander_optuna_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d2ce6a85014511a5f3dd24e518106ed920faa1d99e992d480b19985dbdf8b3b
|
3 |
+
size 147423
|
lander_optuna_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
lander_optuna_2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2e4f6a790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2e4f6a820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2e4f6a8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2e4f6a940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa2e4f6a9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa2e4f6aa60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2e4f6aaf0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2e4f6ab80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa2e4f6ac10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2e4f6aca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2e4f6ad30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2e4f6adc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fa2e4f67360>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 507904,
|
47 |
+
"_total_timesteps": 500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678124130664406078,
|
52 |
+
"learning_rate": 0.0001,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Pl73MPak+sPyXPKESLr90hd29ffHgPAAAAAAAAAAAZoZqOsLpuj8kJQQ8U0qIPZaWDjxV8FA8AAAAAAAAAAAmXeW9WJq7PvReoj0KTRm//77gvc4oxj0AAAAAAAAAAA16oj0UxLi6qf6JvT6p9jx05i88/lXWvQAAAAAAAAAAs7tJPeyBvLlUmTi0zacgr0Gevjs2bZAzAACAPwAAgD8thyA+e99PP0uGWz5d8kC/a/e9PtOn67wAAAAAAAAAAFqt4z3sNMe79cKpviWEB74U3d27eClXPwAAgD8AAIA/wEmWvYdCGT5ICiw+VDzlvvzGfb36Y4o9AAAAAAAAAACaSWC9eySFunpOKDxfQ5A8HDdyO4gUer0AAIA/AACAP80fmjwUdrM7xs4qvc7Jor5j4Ci9rUcevAAAAAAAAAAAk4huvgCeNT/Ag1W88CUMv1yrtL5RFAg+AAAAAAAAAAAzuxI7SVO5PwLmZz1exL0+bcEmu33JT7wAAAAAAAAAAHrKDz7DVFY/YsiCPnRGSr8e86A+llXQPAAAAAAAAAAAzSUKvR8F+LmCmI48maGXNgMP/rrQyZI1AAAAAAAAAAC6xA++iWFUP/VpCr4OtVK/rnlhvlrnXjwAAAAAAAAAAGYE0TwVNTQ/TfsaPf7ab79KR1o9zdSzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8mH2si3fcECUhpRSlIwBbJRLpowBdJRHQILx/jXFtKt1fZQoaAZoCWgPQwhblxqhX9VwQJSGlFKUaBVLqmgWR0CC8igUUO/ddX2UKGgGaAloD0MIMUROX4/ycECUhpRSlGgVS7toFkdAgvNo+GGmDXV9lChoBmgJaA9DCKyPh767THJAlIaUUpRoFUu3aBZHQILzkunMt9R1fZQoaAZoCWgPQwidgvxsJD5wQJSGlFKUaBVLimgWR0CC9CKEWZZ0dX2UKGgGaAloD0MI9b7xteeTcECUhpRSlGgVS6VoFkdAgvR1YQrc03V9lChoBmgJaA9DCG3+X3WkrHFAlIaUUpRoFUuYaBZHQIL0vYraufV1fZQoaAZoCWgPQwgZxXJLK3lzQJSGlFKUaBVLuWgWR0CC9WtlI3BIdX2UKGgGaAloD0MIcyzvqgeHckCUhpRSlGgVS8doFkdAgvaPY4ACGXV9lChoBmgJaA9DCPFHUWeuV3JAlIaUUpRoFUt+aBZHQIL3JBkZrHl1fZQoaAZoCWgPQwgczvxqDv5xQJSGlFKUaBVLxGgWR0CC+A29cry2dX2UKGgGaAloD0MIvFgYIifZcECUhpRSlGgVS5ZoFkdAgzA+GXXyy3V9lChoBmgJaA9DCH6rdeIypnNAlIaUUpRoFUvPaBZHQIMxVfu1F6R1fZQoaAZoCWgPQwiXHk31JOFyQJSGlFKUaBVLmmgWR0CDMWO4oZyddX2UKGgGaAloD0MIJA9EFilncECUhpRSlGgVS6xoFkdAgzGk3CKrJnV9lChoBmgJaA9DCKNWmL5XdnFAlIaUUpRoFUukaBZHQIMyM2m51/51fZQoaAZoCWgPQwico46Oq3lOQJSGlFKUaBVLS2gWR0CDMlsxfv4NdX2UKGgGaAloD0MINX7hleReckCUhpRSlGgVS5xoFkdAgzLHtfG+9XV9lChoBmgJaA9DCIbGE0EcGHJAlIaUUpRoFUuVaBZHQIMy4Kv3ai91fZQoaAZoCWgPQwixxAPKppZuQJSGlFKUaBVLkWgWR0CDMvN47ihndX2UKGgGaAloD0MIkgN2NTmGc0CUhpRSlGgVS8ZoFkdAgzNKslsxf3V9lChoBmgJaA9DCEWg+gdRjHNAlIaUUpRoFUvRaBZHQIMz5BX0Xgt1fZQoaAZoCWgPQwiYNEbraG5yQJSGlFKUaBVLo2gWR0CDNC68xsVMdX2UKGgGaAloD0MIgzRj0TQocUCUhpRSlGgVS8hoFkdAgzRjRc/t6XV9lChoBmgJaA9DCMwpATEJKnFAlIaUUpRoFUubaBZHQIM04tvn8sN1fZQoaAZoCWgPQwj7PEZ5ZrJyQJSGlFKUaBVLw2gWR0CDNP0nPVurdX2UKGgGaAloD0MIv9cQHJeBc0CUhpRSlGgVS7toFkdAgzXrmp2lmHV9lChoBmgJaA9DCFFrmndc1XFAlIaUUpRoFUuHaBZHQIM3ue8PFvR1fZQoaAZoCWgPQwiM9KJ2/x5yQJSGlFKUaBVLvmgWR0CDODYoRZlndX2UKGgGaAloD0MIPDCA8CEqckCUhpRSlGgVS6poFkdAgzhnogV45nV9lChoBmgJaA9DCCCcTx1rHHJAlIaUUpRoFUutaBZHQIM4lUZNwit1fZQoaAZoCWgPQwj4wfnUMT9wQJSGlFKUaBVLlWgWR0CDORDF6zE8dX2UKGgGaAloD0MILpCg+HGfckCUhpRSlGgVS7ZoFkdAgzk/BN21UnV9lChoBmgJaA9DCIz0onZ/C3JAlIaUUpRoFUuFaBZHQIM5fB1s+FF1fZQoaAZoCWgPQwhZi08BsFhyQJSGlFKUaBVLsmgWR0CDOhRzijtYdX2UKGgGaAloD0MI46YGmk99cECUhpRSlGgVS5BoFkdAgzoxesxO+XV9lChoBmgJaA9DCGXG20rvGXJAlIaUUpRoFUuYaBZHQIM6uyiVSoB1fZQoaAZoCWgPQwhIqYQnNJ5zQJSGlFKUaBVLv2gWR0CDOsHeJpFkdX2UKGgGaAloD0MISicSTPXYckCUhpRSlGgVS8ZoFkdAgztnFo+OfnV9lChoBmgJaA9DCJlH/mBgmHJAlIaUUpRoFUueaBZHQIM7i8an7551fZQoaAZoCWgPQwibx2EwfwtDQJSGlFKUaBVLW2gWR0CDPBQQ+UyIdX2UKGgGaAloD0MIXJAtyxeHc0CUhpRSlGgVS7VoFkdAgzyEJBw++3V9lChoBmgJaA9DCA4V4/xNSXJAlIaUUpRoFUu4aBZHQIM9dS2phnd1fZQoaAZoCWgPQwhuTE9YYklxQJSGlFKUaBVLjWgWR0CDPqy6cy31dX2UKGgGaAloD0MIDmq/tZMFcUCUhpRSlGgVS6xoFkdAgz6+N96Tn3V9lChoBmgJaA9DCC82rRTCuXNAlIaUUpRoFUupaBZHQIM/IkgOjIt1fZQoaAZoCWgPQwgDYDyDRmdwQJSGlFKUaBVLk2gWR0CDPzDXOGCadX2UKGgGaAloD0MIJNQMqeJmcUCUhpRSlGgVS6hoFkdAgz90M5OrQ3V9lChoBmgJaA9DCMYYWMfxb3BAlIaUUpRoFUuYaBZHQINBCdFvybx1fZQoaAZoCWgPQwjDR8SUCLNxQJSGlFKUaBVLxmgWR0CDQbWmxdIHdX2UKGgGaAloD0MIFVJ+Um32ckCUhpRSlGgVS75oFkdAg0ISIYWLxnV9lChoBmgJaA9DCIOhDivc93JAlIaUUpRoFUvEaBZHQINCgZhrnDB1fZQoaAZoCWgPQwh5lEp4AuVxQJSGlFKUaBVLu2gWR0CDQ3A4XGfgdX2UKGgGaAloD0MI+tNGdXobdECUhpRSlGgVS9FoFkdAg0O5AY51eXV9lChoBmgJaA9DCKDgYkWNKXFAlIaUUpRoFUunaBZHQIND28kD6nB1fZQoaAZoCWgPQwjtgVZgyNZHQJSGlFKUaBVLa2gWR0CDQ/h3JPqLdX2UKGgGaAloD0MIIxKFljWwc0CUhpRSlGgVS8hoFkdAg0QwVTJhfHV9lChoBmgJaA9DCENZ+PpaRnBAlIaUUpRoFUucaBZHQINEY4ffXPJ1fZQoaAZoCWgPQwhr71NVaLFyQJSGlFKUaBVLlWgWR0CDhGO7QLNOdX2UKGgGaAloD0MIvi1Yqovfb0CUhpRSlGgVS6ZoFkdAg4R4A0bcXXV9lChoBmgJaA9DCG/0MR8QSnBAlIaUUpRoFUuxaBZHQIOE7HsC1Z11fZQoaAZoCWgPQwjYKVYNwkZzQJSGlFKUaBVLkGgWR0CDhgCo0hvBdX2UKGgGaAloD0MIyVUsfhP1ckCUhpRSlGgVS8poFkdAg4awu/UONHV9lChoBmgJaA9DCMqIC0CjbEBAlIaUUpRoFUt1aBZHQIOHnJV81Gd1fZQoaAZoCWgPQwh7pMFtLQNxQJSGlFKUaBVLo2gWR0CDh/27FsHjdX2UKGgGaAloD0MIBg39E5yKc0CUhpRSlGgVS7poFkdAg4i/oq0+knV9lChoBmgJaA9DCIgs0sS7NHNAlIaUUpRoFUuqaBZHQIOIzEit7rt1fZQoaAZoCWgPQwizXDY6Z+pyQJSGlFKUaBVLqmgWR0CDig5sCT2WdX2UKGgGaAloD0MIavZAKzAEcUCUhpRSlGgVS55oFkdAg4oDnvDxb3V9lChoBmgJaA9DCNrhr8laE3RAlIaUUpRoFUujaBZHQIOKgy9EkSp1fZQoaAZoCWgPQwhdv2A3bEVzQJSGlFKUaBVLvGgWR0CDiqrDqGDddX2UKGgGaAloD0MIzt+EQgRqckCUhpRSlGgVS8VoFkdAg4vghr30w3V9lChoBmgJaA9DCG0eh8E8wHBAlIaUUpRoFUucaBZHQIOM5IatLct1fZQoaAZoCWgPQwgUsB2MWKxyQJSGlFKUaBVLumgWR0CDjdjz7MxHdX2UKGgGaAloD0MITYI3pJGCcUCUhpRSlGgVS8hoFkdAg46j1oQFtHV9lChoBmgJaA9DCHLD76abSHFAlIaUUpRoFUu4aBZHQIOPZi/fwZx1fZQoaAZoCWgPQwiI83ACk7JwQJSGlFKUaBVLkmgWR0CDkDrAP/aQdX2UKGgGaAloD0MIVRSvsvaqckCUhpRSlGgVS8doFkdAg5DU7Sy+pXV9lChoBmgJaA9DCE34pX6eSXBAlIaUUpRoFUujaBZHQIORIpUgjhV1fZQoaAZoCWgPQwhAvRk13xZyQJSGlFKUaBVLhmgWR0CDkaAMlTm5dX2UKGgGaAloD0MIJ4bkZGKAcUCUhpRSlGgVS8NoFkdAg5GV/c32mHV9lChoBmgJaA9DCHe9NEVAVnJAlIaUUpRoFUutaBZHQIOS+T7l7t11fZQoaAZoCWgPQwid9L7x9VZ0QJSGlFKUaBVL1mgWR0CDku4yXUpedX2UKGgGaAloD0MI66pALUYOc0CUhpRSlGgVS79oFkdAg5Papo9LYnV9lChoBmgJaA9DCE33OqmvkHFAlIaUUpRoFUu3aBZHQIOT9EkSmIl1fZQoaAZoCWgPQwhevvVhvY9yQJSGlFKUaBVLuWgWR0CDlShQm/nGdX2UKGgGaAloD0MIV8wIb4+fc0CUhpRSlGgVS9doFkdAg5e6nR9gGHV9lChoBmgJaA9DCEdUqG6uD3JAlIaUUpRoFUvFaBZHQIOXyZDzAet1fZQoaAZoCWgPQwhcABqli7JxQJSGlFKUaBVLm2gWR0CDmBghKUV0dX2UKGgGaAloD0MI+RBUjR6vckCUhpRSlGgVS71oFkdAg5gtiYsunXV9lChoBmgJaA9DCDY656f4DHJAlIaUUpRoFUvBaBZHQIOZJXQtz0Z1fZQoaAZoCWgPQwhKfO4E+2tvQJSGlFKUaBVLlmgWR0CDmTnW8RL9dX2UKGgGaAloD0MIlumXiLeRc0CUhpRSlGgVS5toFkdAg5lz5wfhdnV9lChoBmgJaA9DCMtMaf3tUnJAlIaUUpRoFUuBaBZHQIOaWe4Cp3p1fZQoaAZoCWgPQwgXoG01qxlyQJSGlFKUaBVLvmgWR0CDmnM495hSdX2UKGgGaAloD0MI6ITQQRdic0CUhpRSlGgVTZ4DaBZHQIObl7KJVKh1fZQoaAZoCWgPQwgL1GLwcM1zQJSGlFKUaBVLz2gWR0CDm6IWxhUjdX2UKGgGaAloD0MIgzKNJtfqc0CUhpRSlGgVS69oFkdAg5vEmY0EYHV9lChoBmgJaA9DCHyeP21Uj3JAlIaUUpRoFUvJaBZHQIOc9Tzd1uB1fZQoaAZoCWgPQwi1cFmFTapyQJSGlFKUaBVLvGgWR0CDnTzTWoWIdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 3438,
|
80 |
+
"n_steps": 512,
|
81 |
+
"gamma": 0.997,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 6.38e-06,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.31,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
lander_optuna_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40b7902286d04330eb5bc8cee1bfb157b832c5cc246626ce0973e24817191ffa
|
3 |
+
size 88057
|
lander_optuna_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24b726baf7669553890dc1935beef926e345225dc739f21def069abd80e6e174
|
3 |
+
size 43393
|
lander_optuna_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lander_optuna_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (227 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 288.7833772872558, "std_reward": 21.087738666536268, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T17:52:12.517490"}
|