GGunjan commited on
Commit
31db330
1 Parent(s): 363a368

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.76 +/- 0.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:511e556221db23f32b6d6b370043d3c8d174bd6cdd5f50bdad5456561d2adc61
3
+ size 108027
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f74a875bf70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f74a8781180>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680632497128888205,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAN59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOilv1KaWz8x+Bo/A1QWv3mPB79yN6A/UWXHvlmezL8a7Kq/84aLv8jJxj+DFae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1DuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]]",
60
+ "desired_goal": "[[-1.2961559 0.8578235 0.6053496 ]\n [-0.5872194 -0.52953297 1.251692 ]\n [-0.38944486 -1.5985824 -1.3353302 ]\n [-1.0900558 1.5530329 -1.305344 ]]",
61
+ "observation": "[[ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkoPwvSi5A77AGlg+OXWwubbHb7x2HsY9k+HvvQddOr1E0Yo+dzq0PSgULz2+Bko9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.11743845 -0.128636 0.21103954]\n [-0.00033657 -0.01463502 0.09673779]\n [-0.11712947 -0.04549887 0.27112782]\n [ 0.08800214 0.04274383 0.04932284]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDvRQ24bR7b+UhpRSlIwBbJRLMowBdJRHQKlqh4B3iaR1fZQoaAZoCWgPQwjNj7+0qA/zv5SGlFKUaBVLMmgWR0Cpakpaq0dBdX2UKGgGaAloD0MIkiIyrOKN+L+UhpRSlGgVSzJoFkdAqWoL1Iy0r3V9lChoBmgJaA9DCEku/yH9tv2/lIaUUpRoFUsyaBZHQKlpy8ujASF1fZQoaAZoCWgPQwgfEynN5rHzv5SGlFKUaBVLMmgWR0Cpa7LTYukDdX2UKGgGaAloD0MIjSlY42y6C8CUhpRSlGgVSzJoFkdAqWt1iKBNEnV9lChoBmgJaA9DCEyN0M/Ua++/lIaUUpRoFUsyaBZHQKlrNwiJO351fZQoaAZoCWgPQwhO8iN+xZr2v5SGlFKUaBVLMmgWR0CpavatT1kEdX2UKGgGaAloD0MIkZ23sdlxBMCUhpRSlGgVSzJoFkdAqWz8yxiXpnV9lChoBmgJaA9DCDY9KChFywjAlIaUUpRoFUsyaBZHQKlsv3Zf2K51fZQoaAZoCWgPQwh8Yp0q3zP/v5SGlFKUaBVLMmgWR0CpbIDe0ojOdX2UKGgGaAloD0MIsRU0LbEy97+UhpRSlGgVSzJoFkdAqWxAfbKzRnV9lChoBmgJaA9DCN82UyEeyQPAlIaUUpRoFUsyaBZHQKluMDoyKvV1fZQoaAZoCWgPQwj44LVLG47uv5SGlFKUaBVLMmgWR0CpbfMUh3aBdX2UKGgGaAloD0MII4JxcOnY8r+UhpRSlGgVSzJoFkdAqW20fT1CgXV9lChoBmgJaA9DCAyTqYJRCQbAlIaUUpRoFUsyaBZHQKltdFmWdEt1fZQoaAZoCWgPQwi2Z5YEqOn1v5SGlFKUaBVLMmgWR0Cpb1/VZs9CdX2UKGgGaAloD0MIqHFvfsNE7b+UhpRSlGgVSzJoFkdAqW8iiVSn+HV9lChoBmgJaA9DCH14liAjoOm/lIaUUpRoFUsyaBZHQKlu5A3T/hl1fZQoaAZoCWgPQwivljszwZAEwJSGlFKUaBVLMmgWR0CpbqPUz9CNdX2UKGgGaAloD0MIiuWWVkMi+L+UhpRSlGgVSzJoFkdAqXChGKAJ9nV9lChoBmgJaA9DCD0Og/krRATAlIaUUpRoFUsyaBZHQKlwY96C17Z1fZQoaAZoCWgPQwj+1k6UhMTyv5SGlFKUaBVLMmgWR0CpcCU7jkuIdX2UKGgGaAloD0MIw0maP6a19L+UhpRSlGgVSzJoFkdAqW/kz/IbO3V9lChoBmgJaA9DCEAXDRmPUg7AlIaUUpRoFUsyaBZHQKlx8J9iMHd1fZQoaAZoCWgPQwgD7nn+tNEBwJSGlFKUaBVLMmgWR0CpcbReb/fgdX2UKGgGaAloD0MITTEHQUdLAMCUhpRSlGgVSzJoFkdAqXF254GD+XV9lChoBmgJaA9DCHKlngWhnAnAlIaUUpRoFUsyaBZHQKlxN4iX6ZZ1fZQoaAZoCWgPQwhMi/okdxj9v5SGlFKUaBVLMmgWR0Cpc+hP0qYrdX2UKGgGaAloD0MIyv0ORYH+AMCUhpRSlGgVSzJoFkdAqXOr1oQFtHV9lChoBmgJaA9DCAIqHEEqBfq/lIaUUpRoFUsyaBZHQKlzbhXr+o91fZQoaAZoCWgPQwhxPJ8B9Wbtv5SGlFKUaBVLMmgWR0Cpcy7Gm1pkdX2UKGgGaAloD0MIdVWgFoOH+L+UhpRSlGgVSzJoFkdAqXXSkKu0TnV9lChoBmgJaA9DCNNsHofB/AbAlIaUUpRoFUsyaBZHQKl1lm+0w8J1fZQoaAZoCWgPQwhaETXR50MKwJSGlFKUaBVLMmgWR0CpdVjjzZpSdX2UKGgGaAloD0MI7rJfd7rzBMCUhpRSlGgVSzJoFkdAqXUZkI5YHXV9lChoBmgJaA9DCBuFJLN6B/C/lIaUUpRoFUsyaBZHQKl31jdYW+J1fZQoaAZoCWgPQwjxuRPsv87pv5SGlFKUaBVLMmgWR0Cpd5nF5v9+dX2UKGgGaAloD0MInprLDYYqEMCUhpRSlGgVSzJoFkdAqXdcKkVN6HV9lChoBmgJaA9DCK1rtBzoIfa/lIaUUpRoFUsyaBZHQKl3HHOryUd1fZQoaAZoCWgPQwiQ2Vn0TsX/v5SGlFKUaBVLMmgWR0CpehCGFi8WdX2UKGgGaAloD0MI8bkT7L8uCMCUhpRSlGgVSzJoFkdAqXnUTL4etHV9lChoBmgJaA9DCCMQr+sXjAPAlIaUUpRoFUsyaBZHQKl5lrrPdEd1fZQoaAZoCWgPQwippE5AE4EEwJSGlFKUaBVLMmgWR0CpeVe8PFvRdX2UKGgGaAloD0MIp5at9UVC9r+UhpRSlGgVSzJoFkdAqXwM1AJLNHV9lChoBmgJaA9DCO5brROXY/m/lIaUUpRoFUsyaBZHQKl70LVFx4p1fZQoaAZoCWgPQwi+F1+0x6sGwJSGlFKUaBVLMmgWR0Cpe5OYx+KCdX2UKGgGaAloD0MIoNy271F/+r+UhpRSlGgVSzJoFkdAqXtU3n6l+HV9lChoBmgJaA9DCK6ek943vv6/lIaUUpRoFUsyaBZHQKl9nT1CgK51fZQoaAZoCWgPQwiTN8DMd7D9v5SGlFKUaBVLMmgWR0CpfWARsdkrdX2UKGgGaAloD0MIkWEVb2SeDMCUhpRSlGgVSzJoFkdAqX0hrvb48HV9lChoBmgJaA9DCPWDukihLOW/lIaUUpRoFUsyaBZHQKl84XsPatd1fZQoaAZoCWgPQwguH0lJD+MLwJSGlFKUaBVLMmgWR0Cpft48uBczdX2UKGgGaAloD0MIyCO4kbJF/L+UhpRSlGgVSzJoFkdAqX6g+QlrunV9lChoBmgJaA9DCDGale1DXu6/lIaUUpRoFUsyaBZHQKl+Yr7O3Uh1fZQoaAZoCWgPQwiyZfm6DH/hv5SGlFKUaBVLMmgWR0CpfiKOcUdrdX2UKGgGaAloD0MI5V5gViiS+7+UhpRSlGgVSzJoFkdAqYAKhWYF7nV9lChoBmgJaA9DCHVVoBaDB/u/lIaUUpRoFUsyaBZHQKl/zUDuBtl1fZQoaAZoCWgPQwhS0sPQ6oQNwJSGlFKUaBVLMmgWR0Cpf462WpqAdX2UKGgGaAloD0MIxa7t7ZbkAMCUhpRSlGgVSzJoFkdAqX9OWv8qF3V9lChoBmgJaA9DCP0QGyyc5Pq/lIaUUpRoFUsyaBZHQKmBTN9ph4N1fZQoaAZoCWgPQwhKz/QSY5npv5SGlFKUaBVLMmgWR0CpgQ+aBqbjdX2UKGgGaAloD0MI6pPcYROZ9b+UhpRSlGgVSzJoFkdAqYDRHLA573V9lChoBmgJaA9DCHRcjexKSwHAlIaUUpRoFUsyaBZHQKmAkPFvQ4V1fZQoaAZoCWgPQwhPeAlOfWD3v5SGlFKUaBVLMmgWR0CpgnYcm0E6dX2UKGgGaAloD0MILbDHRErz9b+UhpRSlGgVSzJoFkdAqYI4vxpco3V9lChoBmgJaA9DCLgiMUENX/i/lIaUUpRoFUsyaBZHQKmB+jjaPCF1fZQoaAZoCWgPQwg4aoXpew36v5SGlFKUaBVLMmgWR0Cpgbn8jzI4dX2UKGgGaAloD0MI3NRA8zn3/r+UhpRSlGgVSzJoFkdAqYOaG8EmpnV9lChoBmgJaA9DCELr4ctE0fu/lIaUUpRoFUsyaBZHQKmDXKlHjId1fZQoaAZoCWgPQwi6hENv8dABwJSGlFKUaBVLMmgWR0Cpgx3zDn/2dX2UKGgGaAloD0MI3NRA8zm39b+UhpRSlGgVSzJoFkdAqYLdenhsInV9lChoBmgJaA9DCCuFQC5x5ADAlIaUUpRoFUsyaBZHQKmEs2TgVGl1fZQoaAZoCWgPQwhd/kP67UsEwJSGlFKUaBVLMmgWR0CphHYA0bcXdX2UKGgGaAloD0MIKzOl9bfE97+UhpRSlGgVSzJoFkdAqYQ3aWX1J3V9lChoBmgJaA9DCCMtlbcjvAHAlIaUUpRoFUsyaBZHQKmD9sWO6up1fZQoaAZoCWgPQwiFJLN6hzsRwJSGlFKUaBVLMmgWR0Cphh7iZOSGdX2UKGgGaAloD0MIucFQhxUu/b+UhpRSlGgVSzJoFkdAqYXhR0lqrXV9lChoBmgJaA9DCKBQTx+BXwXAlIaUUpRoFUsyaBZHQKmFo4tHxz91fZQoaAZoCWgPQwjso1NXPosBwJSGlFKUaBVLMmgWR0CphWP6TGHYdX2UKGgGaAloD0MI9mG9USvMCcCUhpRSlGgVSzJoFkdAqYdG/WUbDXV9lChoBmgJaA9DCDT3kPC9P++/lIaUUpRoFUsyaBZHQKmHCatLcsV1fZQoaAZoCWgPQwhG66hqgogOwJSGlFKUaBVLMmgWR0Cphsr+PzWgdX2UKGgGaAloD0MI8IY0KnDSC8CUhpRSlGgVSzJoFkdAqYaKunuRcXV9lChoBmgJaA9DCIrnbAGh9RDAlIaUUpRoFUsyaBZHQKmIXvegte51fZQoaAZoCWgPQwhmaafmcgPzv5SGlFKUaBVLMmgWR0CpiCF/hESedX2UKGgGaAloD0MIiSe7mdHPCsCUhpRSlGgVSzJoFkdAqYfi72+PBHV9lChoBmgJaA9DCOOMYU7QZvC/lIaUUpRoFUsyaBZHQKmHomKIi1R1fZQoaAZoCWgPQwgyc4HLY+0EwJSGlFKUaBVLMmgWR0CpiXuvMbFTdX2UKGgGaAloD0MI2bERiNf1/r+UhpRSlGgVSzJoFkdAqYk+AZsKs3V9lChoBmgJaA9DCJgUH5+QXfC/lIaUUpRoFUsyaBZHQKmI/zMA3kx1fZQoaAZoCWgPQwgwnkFD/2QEwJSGlFKUaBVLMmgWR0CpiL6wMYuTdX2UKGgGaAloD0MI1UDzOXcbCMCUhpRSlGgVSzJoFkdAqYqMep4r0HV9lChoBmgJaA9DCBprf2d7lAbAlIaUUpRoFUsyaBZHQKmKTyp71I11fZQoaAZoCWgPQwgomgewyC/8v5SGlFKUaBVLMmgWR0CpihBshxHYdX2UKGgGaAloD0MIx3+BIECG7r+UhpRSlGgVSzJoFkdAqYnPvUjLS3V9lChoBmgJaA9DCKW+LO3UHAbAlIaUUpRoFUsyaBZHQKmLoCkGiYd1fZQoaAZoCWgPQwhqGD4ipgT7v5SGlFKUaBVLMmgWR0Cpi2LJCBwudX2UKGgGaAloD0MIsBwhA3nWAsCUhpRSlGgVSzJoFkdAqYskLSeAeHV9lChoBmgJaA9DCGQ9tfrqSgPAlIaUUpRoFUsyaBZHQKmK4+M6zVt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fa62054c344fc0d17588afe82cc43f196077606f44c756be03f8401c090bffc
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:717e6ff282990fbdc2e666435d7d362663b34d876728557c86e3c485154b7cf9
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f74a875bf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f74a8781180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680632497128888205, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAN59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOilv1KaWz8x+Bo/A1QWv3mPB79yN6A/UWXHvlmezL8a7Kq/84aLv8jJxj+DFae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]]", "desired_goal": "[[-1.2961559 0.8578235 0.6053496 ]\n [-0.5872194 -0.52953297 1.251692 ]\n [-0.38944486 -1.5985824 -1.3353302 ]\n [-1.0900558 1.5530329 -1.305344 ]]", "observation": "[[ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkoPwvSi5A77AGlg+OXWwubbHb7x2HsY9k+HvvQddOr1E0Yo+dzq0PSgULz2+Bko9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11743845 -0.128636 0.21103954]\n [-0.00033657 -0.01463502 0.09673779]\n [-0.11712947 -0.04549887 0.27112782]\n [ 0.08800214 0.04274383 0.04932284]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDvRQ24bR7b+UhpRSlIwBbJRLMowBdJRHQKlqh4B3iaR1fZQoaAZoCWgPQwjNj7+0qA/zv5SGlFKUaBVLMmgWR0Cpakpaq0dBdX2UKGgGaAloD0MIkiIyrOKN+L+UhpRSlGgVSzJoFkdAqWoL1Iy0r3V9lChoBmgJaA9DCEku/yH9tv2/lIaUUpRoFUsyaBZHQKlpy8ujASF1fZQoaAZoCWgPQwgfEynN5rHzv5SGlFKUaBVLMmgWR0Cpa7LTYukDdX2UKGgGaAloD0MIjSlY42y6C8CUhpRSlGgVSzJoFkdAqWt1iKBNEnV9lChoBmgJaA9DCEyN0M/Ua++/lIaUUpRoFUsyaBZHQKlrNwiJO351fZQoaAZoCWgPQwhO8iN+xZr2v5SGlFKUaBVLMmgWR0CpavatT1kEdX2UKGgGaAloD0MIkZ23sdlxBMCUhpRSlGgVSzJoFkdAqWz8yxiXpnV9lChoBmgJaA9DCDY9KChFywjAlIaUUpRoFUsyaBZHQKlsv3Zf2K51fZQoaAZoCWgPQwh8Yp0q3zP/v5SGlFKUaBVLMmgWR0CpbIDe0ojOdX2UKGgGaAloD0MIsRU0LbEy97+UhpRSlGgVSzJoFkdAqWxAfbKzRnV9lChoBmgJaA9DCN82UyEeyQPAlIaUUpRoFUsyaBZHQKluMDoyKvV1fZQoaAZoCWgPQwj44LVLG47uv5SGlFKUaBVLMmgWR0CpbfMUh3aBdX2UKGgGaAloD0MII4JxcOnY8r+UhpRSlGgVSzJoFkdAqW20fT1CgXV9lChoBmgJaA9DCAyTqYJRCQbAlIaUUpRoFUsyaBZHQKltdFmWdEt1fZQoaAZoCWgPQwi2Z5YEqOn1v5SGlFKUaBVLMmgWR0Cpb1/VZs9CdX2UKGgGaAloD0MIqHFvfsNE7b+UhpRSlGgVSzJoFkdAqW8iiVSn+HV9lChoBmgJaA9DCH14liAjoOm/lIaUUpRoFUsyaBZHQKlu5A3T/hl1fZQoaAZoCWgPQwivljszwZAEwJSGlFKUaBVLMmgWR0CpbqPUz9CNdX2UKGgGaAloD0MIiuWWVkMi+L+UhpRSlGgVSzJoFkdAqXChGKAJ9nV9lChoBmgJaA9DCD0Og/krRATAlIaUUpRoFUsyaBZHQKlwY96C17Z1fZQoaAZoCWgPQwj+1k6UhMTyv5SGlFKUaBVLMmgWR0CpcCU7jkuIdX2UKGgGaAloD0MIw0maP6a19L+UhpRSlGgVSzJoFkdAqW/kz/IbO3V9lChoBmgJaA9DCEAXDRmPUg7AlIaUUpRoFUsyaBZHQKlx8J9iMHd1fZQoaAZoCWgPQwgD7nn+tNEBwJSGlFKUaBVLMmgWR0CpcbReb/fgdX2UKGgGaAloD0MITTEHQUdLAMCUhpRSlGgVSzJoFkdAqXF254GD+XV9lChoBmgJaA9DCHKlngWhnAnAlIaUUpRoFUsyaBZHQKlxN4iX6ZZ1fZQoaAZoCWgPQwhMi/okdxj9v5SGlFKUaBVLMmgWR0Cpc+hP0qYrdX2UKGgGaAloD0MIyv0ORYH+AMCUhpRSlGgVSzJoFkdAqXOr1oQFtHV9lChoBmgJaA9DCAIqHEEqBfq/lIaUUpRoFUsyaBZHQKlzbhXr+o91fZQoaAZoCWgPQwhxPJ8B9Wbtv5SGlFKUaBVLMmgWR0Cpcy7Gm1pkdX2UKGgGaAloD0MIdVWgFoOH+L+UhpRSlGgVSzJoFkdAqXXSkKu0TnV9lChoBmgJaA9DCNNsHofB/AbAlIaUUpRoFUsyaBZHQKl1lm+0w8J1fZQoaAZoCWgPQwhaETXR50MKwJSGlFKUaBVLMmgWR0CpdVjjzZpSdX2UKGgGaAloD0MI7rJfd7rzBMCUhpRSlGgVSzJoFkdAqXUZkI5YHXV9lChoBmgJaA9DCBuFJLN6B/C/lIaUUpRoFUsyaBZHQKl31jdYW+J1fZQoaAZoCWgPQwjxuRPsv87pv5SGlFKUaBVLMmgWR0Cpd5nF5v9+dX2UKGgGaAloD0MInprLDYYqEMCUhpRSlGgVSzJoFkdAqXdcKkVN6HV9lChoBmgJaA9DCK1rtBzoIfa/lIaUUpRoFUsyaBZHQKl3HHOryUd1fZQoaAZoCWgPQwiQ2Vn0TsX/v5SGlFKUaBVLMmgWR0CpehCGFi8WdX2UKGgGaAloD0MI8bkT7L8uCMCUhpRSlGgVSzJoFkdAqXnUTL4etHV9lChoBmgJaA9DCCMQr+sXjAPAlIaUUpRoFUsyaBZHQKl5lrrPdEd1fZQoaAZoCWgPQwippE5AE4EEwJSGlFKUaBVLMmgWR0CpeVe8PFvRdX2UKGgGaAloD0MIp5at9UVC9r+UhpRSlGgVSzJoFkdAqXwM1AJLNHV9lChoBmgJaA9DCO5brROXY/m/lIaUUpRoFUsyaBZHQKl70LVFx4p1fZQoaAZoCWgPQwi+F1+0x6sGwJSGlFKUaBVLMmgWR0Cpe5OYx+KCdX2UKGgGaAloD0MIoNy271F/+r+UhpRSlGgVSzJoFkdAqXtU3n6l+HV9lChoBmgJaA9DCK6ek943vv6/lIaUUpRoFUsyaBZHQKl9nT1CgK51fZQoaAZoCWgPQwiTN8DMd7D9v5SGlFKUaBVLMmgWR0CpfWARsdkrdX2UKGgGaAloD0MIkWEVb2SeDMCUhpRSlGgVSzJoFkdAqX0hrvb48HV9lChoBmgJaA9DCPWDukihLOW/lIaUUpRoFUsyaBZHQKl84XsPatd1fZQoaAZoCWgPQwguH0lJD+MLwJSGlFKUaBVLMmgWR0Cpft48uBczdX2UKGgGaAloD0MIyCO4kbJF/L+UhpRSlGgVSzJoFkdAqX6g+QlrunV9lChoBmgJaA9DCDGale1DXu6/lIaUUpRoFUsyaBZHQKl+Yr7O3Uh1fZQoaAZoCWgPQwiyZfm6DH/hv5SGlFKUaBVLMmgWR0CpfiKOcUdrdX2UKGgGaAloD0MI5V5gViiS+7+UhpRSlGgVSzJoFkdAqYAKhWYF7nV9lChoBmgJaA9DCHVVoBaDB/u/lIaUUpRoFUsyaBZHQKl/zUDuBtl1fZQoaAZoCWgPQwhS0sPQ6oQNwJSGlFKUaBVLMmgWR0Cpf462WpqAdX2UKGgGaAloD0MIxa7t7ZbkAMCUhpRSlGgVSzJoFkdAqX9OWv8qF3V9lChoBmgJaA9DCP0QGyyc5Pq/lIaUUpRoFUsyaBZHQKmBTN9ph4N1fZQoaAZoCWgPQwhKz/QSY5npv5SGlFKUaBVLMmgWR0CpgQ+aBqbjdX2UKGgGaAloD0MI6pPcYROZ9b+UhpRSlGgVSzJoFkdAqYDRHLA573V9lChoBmgJaA9DCHRcjexKSwHAlIaUUpRoFUsyaBZHQKmAkPFvQ4V1fZQoaAZoCWgPQwhPeAlOfWD3v5SGlFKUaBVLMmgWR0CpgnYcm0E6dX2UKGgGaAloD0MILbDHRErz9b+UhpRSlGgVSzJoFkdAqYI4vxpco3V9lChoBmgJaA9DCLgiMUENX/i/lIaUUpRoFUsyaBZHQKmB+jjaPCF1fZQoaAZoCWgPQwg4aoXpew36v5SGlFKUaBVLMmgWR0Cpgbn8jzI4dX2UKGgGaAloD0MI3NRA8zn3/r+UhpRSlGgVSzJoFkdAqYOaG8EmpnV9lChoBmgJaA9DCELr4ctE0fu/lIaUUpRoFUsyaBZHQKmDXKlHjId1fZQoaAZoCWgPQwi6hENv8dABwJSGlFKUaBVLMmgWR0Cpgx3zDn/2dX2UKGgGaAloD0MI3NRA8zm39b+UhpRSlGgVSzJoFkdAqYLdenhsInV9lChoBmgJaA9DCCuFQC5x5ADAlIaUUpRoFUsyaBZHQKmEs2TgVGl1fZQoaAZoCWgPQwhd/kP67UsEwJSGlFKUaBVLMmgWR0CphHYA0bcXdX2UKGgGaAloD0MIKzOl9bfE97+UhpRSlGgVSzJoFkdAqYQ3aWX1J3V9lChoBmgJaA9DCCMtlbcjvAHAlIaUUpRoFUsyaBZHQKmD9sWO6up1fZQoaAZoCWgPQwiFJLN6hzsRwJSGlFKUaBVLMmgWR0Cphh7iZOSGdX2UKGgGaAloD0MIucFQhxUu/b+UhpRSlGgVSzJoFkdAqYXhR0lqrXV9lChoBmgJaA9DCKBQTx+BXwXAlIaUUpRoFUsyaBZHQKmFo4tHxz91fZQoaAZoCWgPQwjso1NXPosBwJSGlFKUaBVLMmgWR0CphWP6TGHYdX2UKGgGaAloD0MI9mG9USvMCcCUhpRSlGgVSzJoFkdAqYdG/WUbDXV9lChoBmgJaA9DCDT3kPC9P++/lIaUUpRoFUsyaBZHQKmHCatLcsV1fZQoaAZoCWgPQwhG66hqgogOwJSGlFKUaBVLMmgWR0Cphsr+PzWgdX2UKGgGaAloD0MI8IY0KnDSC8CUhpRSlGgVSzJoFkdAqYaKunuRcXV9lChoBmgJaA9DCIrnbAGh9RDAlIaUUpRoFUsyaBZHQKmIXvegte51fZQoaAZoCWgPQwhmaafmcgPzv5SGlFKUaBVLMmgWR0CpiCF/hESedX2UKGgGaAloD0MIiSe7mdHPCsCUhpRSlGgVSzJoFkdAqYfi72+PBHV9lChoBmgJaA9DCOOMYU7QZvC/lIaUUpRoFUsyaBZHQKmHomKIi1R1fZQoaAZoCWgPQwgyc4HLY+0EwJSGlFKUaBVLMmgWR0CpiXuvMbFTdX2UKGgGaAloD0MI2bERiNf1/r+UhpRSlGgVSzJoFkdAqYk+AZsKs3V9lChoBmgJaA9DCJgUH5+QXfC/lIaUUpRoFUsyaBZHQKmI/zMA3kx1fZQoaAZoCWgPQwgwnkFD/2QEwJSGlFKUaBVLMmgWR0CpiL6wMYuTdX2UKGgGaAloD0MI1UDzOXcbCMCUhpRSlGgVSzJoFkdAqYqMep4r0HV9lChoBmgJaA9DCBprf2d7lAbAlIaUUpRoFUsyaBZHQKmKTyp71I11fZQoaAZoCWgPQwgomgewyC/8v5SGlFKUaBVLMmgWR0CpihBshxHYdX2UKGgGaAloD0MIx3+BIECG7r+UhpRSlGgVSzJoFkdAqYnPvUjLS3V9lChoBmgJaA9DCKW+LO3UHAbAlIaUUpRoFUsyaBZHQKmLoCkGiYd1fZQoaAZoCWgPQwhqGD4ipgT7v5SGlFKUaBVLMmgWR0Cpi2LJCBwudX2UKGgGaAloD0MIsBwhA3nWAsCUhpRSlGgVSzJoFkdAqYskLSeAeHV9lChoBmgJaA9DCGQ9tfrqSgPAlIaUUpRoFUsyaBZHQKmK4+M6zVt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (583 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.760154826939106, "std_reward": 0.6011285720405963, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T19:17:32.354226"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f80023b5a8263101bb84b4fa1f18ab3266f44758f2f17c763180edb6688b3ba7
3
+ size 3056