Training in progress, step 1000
Browse files- pytorch_model.bin +1 -1
- test_whisper_finetuned.ipynb +53 -265
- training_args.bin +1 -1
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 967102729
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c953e09032d3a83a5cc7c9ef098d1e59f4182bae3fcfc2975fc69db9c359c7b
|
3 |
size 967102729
|
test_whisper_finetuned.ipynb
CHANGED
@@ -2,51 +2,9 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
-
{
|
9 |
-
"data": {
|
10 |
-
"application/vnd.jupyter.widget-view+json": {
|
11 |
-
"model_id": "f7537db8beff4744b3555f4d360cb867",
|
12 |
-
"version_major": 2,
|
13 |
-
"version_minor": 0
|
14 |
-
},
|
15 |
-
"text/plain": [
|
16 |
-
"Downloading data: 0%| | 0.00/10.3G [00:00<?, ?B/s]"
|
17 |
-
]
|
18 |
-
},
|
19 |
-
"metadata": {},
|
20 |
-
"output_type": "display_data"
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"data": {
|
24 |
-
"application/vnd.jupyter.widget-view+json": {
|
25 |
-
"model_id": "0f469fd6738a484bafc3a42ff32bf21e",
|
26 |
-
"version_major": 2,
|
27 |
-
"version_minor": 0
|
28 |
-
},
|
29 |
-
"text/plain": [
|
30 |
-
"Generating train split: 0 examples [00:00, ? examples/s]"
|
31 |
-
]
|
32 |
-
},
|
33 |
-
"metadata": {},
|
34 |
-
"output_type": "display_data"
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"data": {
|
38 |
-
"application/vnd.jupyter.widget-view+json": {
|
39 |
-
"model_id": "ec98f490c01240eb8f89d294a2c59dde",
|
40 |
-
"version_major": 2,
|
41 |
-
"version_minor": 0
|
42 |
-
},
|
43 |
-
"text/plain": [
|
44 |
-
"Generating test split: 0 examples [00:00, ? examples/s]"
|
45 |
-
]
|
46 |
-
},
|
47 |
-
"metadata": {},
|
48 |
-
"output_type": "display_data"
|
49 |
-
},
|
50 |
{
|
51 |
"name": "stdout",
|
52 |
"output_type": "stream",
|
@@ -77,7 +35,7 @@
|
|
77 |
},
|
78 |
{
|
79 |
"cell_type": "code",
|
80 |
-
"execution_count":
|
81 |
"metadata": {},
|
82 |
"outputs": [
|
83 |
{
|
@@ -107,24 +65,9 @@
|
|
107 |
},
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
-
"execution_count":
|
111 |
"metadata": {},
|
112 |
-
"outputs": [
|
113 |
-
{
|
114 |
-
"data": {
|
115 |
-
"application/vnd.jupyter.widget-view+json": {
|
116 |
-
"model_id": "909a04095ce84a70bb1cf0b693bfa843",
|
117 |
-
"version_major": 2,
|
118 |
-
"version_minor": 0
|
119 |
-
},
|
120 |
-
"text/plain": [
|
121 |
-
"Downloading (…)rocessor_config.json: 0%| | 0.00/185k [00:00<?, ?B/s]"
|
122 |
-
]
|
123 |
-
},
|
124 |
-
"metadata": {},
|
125 |
-
"output_type": "display_data"
|
126 |
-
}
|
127 |
-
],
|
128 |
"source": [
|
129 |
"from transformers import WhisperFeatureExtractor\n",
|
130 |
"\n",
|
@@ -133,107 +76,9 @@
|
|
133 |
},
|
134 |
{
|
135 |
"cell_type": "code",
|
136 |
-
"execution_count":
|
137 |
"metadata": {},
|
138 |
"outputs": [
|
139 |
-
{
|
140 |
-
"data": {
|
141 |
-
"application/vnd.jupyter.widget-view+json": {
|
142 |
-
"model_id": "ac6c9f270ae44be7a07f3a2b2518a090",
|
143 |
-
"version_major": 2,
|
144 |
-
"version_minor": 0
|
145 |
-
},
|
146 |
-
"text/plain": [
|
147 |
-
"Downloading (…)okenizer_config.json: 0%| | 0.00/805 [00:00<?, ?B/s]"
|
148 |
-
]
|
149 |
-
},
|
150 |
-
"metadata": {},
|
151 |
-
"output_type": "display_data"
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"data": {
|
155 |
-
"application/vnd.jupyter.widget-view+json": {
|
156 |
-
"model_id": "c5ffc60826bb4582aef22999cd582ec1",
|
157 |
-
"version_major": 2,
|
158 |
-
"version_minor": 0
|
159 |
-
},
|
160 |
-
"text/plain": [
|
161 |
-
"Downloading (…)olve/main/vocab.json: 0%| | 0.00/836k [00:00<?, ?B/s]"
|
162 |
-
]
|
163 |
-
},
|
164 |
-
"metadata": {},
|
165 |
-
"output_type": "display_data"
|
166 |
-
},
|
167 |
-
{
|
168 |
-
"data": {
|
169 |
-
"application/vnd.jupyter.widget-view+json": {
|
170 |
-
"model_id": "9aeafe7afc0241e296b4393281369665",
|
171 |
-
"version_major": 2,
|
172 |
-
"version_minor": 0
|
173 |
-
},
|
174 |
-
"text/plain": [
|
175 |
-
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/2.48M [00:00<?, ?B/s]"
|
176 |
-
]
|
177 |
-
},
|
178 |
-
"metadata": {},
|
179 |
-
"output_type": "display_data"
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"data": {
|
183 |
-
"application/vnd.jupyter.widget-view+json": {
|
184 |
-
"model_id": "91ca2e2c0039401a95603600ccff5f1f",
|
185 |
-
"version_major": 2,
|
186 |
-
"version_minor": 0
|
187 |
-
},
|
188 |
-
"text/plain": [
|
189 |
-
"Downloading (…)olve/main/merges.txt: 0%| | 0.00/494k [00:00<?, ?B/s]"
|
190 |
-
]
|
191 |
-
},
|
192 |
-
"metadata": {},
|
193 |
-
"output_type": "display_data"
|
194 |
-
},
|
195 |
-
{
|
196 |
-
"data": {
|
197 |
-
"application/vnd.jupyter.widget-view+json": {
|
198 |
-
"model_id": "67536c658ac64b96a09abf3f8e558533",
|
199 |
-
"version_major": 2,
|
200 |
-
"version_minor": 0
|
201 |
-
},
|
202 |
-
"text/plain": [
|
203 |
-
"Downloading (…)main/normalizer.json: 0%| | 0.00/52.7k [00:00<?, ?B/s]"
|
204 |
-
]
|
205 |
-
},
|
206 |
-
"metadata": {},
|
207 |
-
"output_type": "display_data"
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"data": {
|
211 |
-
"application/vnd.jupyter.widget-view+json": {
|
212 |
-
"model_id": "07d64b8f7c964df8b138f638629d84b7",
|
213 |
-
"version_major": 2,
|
214 |
-
"version_minor": 0
|
215 |
-
},
|
216 |
-
"text/plain": [
|
217 |
-
"Downloading (…)in/added_tokens.json: 0%| | 0.00/34.6k [00:00<?, ?B/s]"
|
218 |
-
]
|
219 |
-
},
|
220 |
-
"metadata": {},
|
221 |
-
"output_type": "display_data"
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"data": {
|
225 |
-
"application/vnd.jupyter.widget-view+json": {
|
226 |
-
"model_id": "c338b9a3ecb84de1b397a21489da4a2f",
|
227 |
-
"version_major": 2,
|
228 |
-
"version_minor": 0
|
229 |
-
},
|
230 |
-
"text/plain": [
|
231 |
-
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/2.08k [00:00<?, ?B/s]"
|
232 |
-
]
|
233 |
-
},
|
234 |
-
"metadata": {},
|
235 |
-
"output_type": "display_data"
|
236 |
-
},
|
237 |
{
|
238 |
"name": "stderr",
|
239 |
"output_type": "stream",
|
@@ -250,7 +95,7 @@
|
|
250 |
},
|
251 |
{
|
252 |
"cell_type": "code",
|
253 |
-
"execution_count":
|
254 |
"metadata": {},
|
255 |
"outputs": [
|
256 |
{
|
@@ -269,7 +114,7 @@
|
|
269 |
},
|
270 |
{
|
271 |
"cell_type": "code",
|
272 |
-
"execution_count":
|
273 |
"metadata": {},
|
274 |
"outputs": [
|
275 |
{
|
@@ -287,7 +132,7 @@
|
|
287 |
},
|
288 |
{
|
289 |
"cell_type": "code",
|
290 |
-
"execution_count":
|
291 |
"metadata": {},
|
292 |
"outputs": [],
|
293 |
"source": [
|
@@ -299,7 +144,7 @@
|
|
299 |
},
|
300 |
{
|
301 |
"cell_type": "code",
|
302 |
-
"execution_count":
|
303 |
"metadata": {},
|
304 |
"outputs": [
|
305 |
{
|
@@ -317,7 +162,7 @@
|
|
317 |
},
|
318 |
{
|
319 |
"cell_type": "code",
|
320 |
-
"execution_count":
|
321 |
"metadata": {},
|
322 |
"outputs": [],
|
323 |
"source": [
|
@@ -331,7 +176,7 @@
|
|
331 |
},
|
332 |
{
|
333 |
"cell_type": "code",
|
334 |
-
"execution_count":
|
335 |
"metadata": {},
|
336 |
"outputs": [],
|
337 |
"source": [
|
@@ -358,13 +203,13 @@
|
|
358 |
},
|
359 |
{
|
360 |
"cell_type": "code",
|
361 |
-
"execution_count":
|
362 |
"metadata": {},
|
363 |
"outputs": [
|
364 |
{
|
365 |
"data": {
|
366 |
"application/vnd.jupyter.widget-view+json": {
|
367 |
-
"model_id": "
|
368 |
"version_major": 2,
|
369 |
"version_minor": 0
|
370 |
},
|
@@ -378,7 +223,7 @@
|
|
378 |
{
|
379 |
"data": {
|
380 |
"application/vnd.jupyter.widget-view+json": {
|
381 |
-
"model_id": "
|
382 |
"version_major": 2,
|
383 |
"version_minor": 0
|
384 |
},
|
@@ -396,7 +241,7 @@
|
|
396 |
},
|
397 |
{
|
398 |
"cell_type": "code",
|
399 |
-
"execution_count":
|
400 |
"metadata": {},
|
401 |
"outputs": [],
|
402 |
"source": [
|
@@ -409,13 +254,13 @@
|
|
409 |
},
|
410 |
{
|
411 |
"cell_type": "code",
|
412 |
-
"execution_count":
|
413 |
"metadata": {},
|
414 |
"outputs": [
|
415 |
{
|
416 |
"data": {
|
417 |
"application/vnd.jupyter.widget-view+json": {
|
418 |
-
"model_id": "
|
419 |
"version_major": 2,
|
420 |
"version_minor": 0
|
421 |
},
|
@@ -436,7 +281,7 @@
|
|
436 |
},
|
437 |
{
|
438 |
"cell_type": "code",
|
439 |
-
"execution_count":
|
440 |
"metadata": {},
|
441 |
"outputs": [],
|
442 |
"source": [
|
@@ -475,7 +320,7 @@
|
|
475 |
},
|
476 |
{
|
477 |
"cell_type": "code",
|
478 |
-
"execution_count":
|
479 |
"metadata": {},
|
480 |
"outputs": [],
|
481 |
"source": [
|
@@ -484,7 +329,7 @@
|
|
484 |
},
|
485 |
{
|
486 |
"cell_type": "code",
|
487 |
-
"execution_count":
|
488 |
"metadata": {},
|
489 |
"outputs": [],
|
490 |
"source": [
|
@@ -495,24 +340,9 @@
|
|
495 |
},
|
496 |
{
|
497 |
"cell_type": "code",
|
498 |
-
"execution_count":
|
499 |
"metadata": {},
|
500 |
-
"outputs": [
|
501 |
-
{
|
502 |
-
"data": {
|
503 |
-
"application/vnd.jupyter.widget-view+json": {
|
504 |
-
"model_id": "a57f57bdfa4e4f1ba64458a6e381ebc1",
|
505 |
-
"version_major": 2,
|
506 |
-
"version_minor": 0
|
507 |
-
},
|
508 |
-
"text/plain": [
|
509 |
-
"Downloading builder script: 0%| | 0.00/5.60k [00:00<?, ?B/s]"
|
510 |
-
]
|
511 |
-
},
|
512 |
-
"metadata": {},
|
513 |
-
"output_type": "display_data"
|
514 |
-
}
|
515 |
-
],
|
516 |
"source": [
|
517 |
"from evaluate import load\n",
|
518 |
"cer_score = evaluate.load(\"cer\")"
|
@@ -550,7 +380,7 @@
|
|
550 |
},
|
551 |
{
|
552 |
"cell_type": "code",
|
553 |
-
"execution_count":
|
554 |
"metadata": {},
|
555 |
"outputs": [],
|
556 |
"source": [
|
@@ -580,52 +410,9 @@
|
|
580 |
},
|
581 |
{
|
582 |
"cell_type": "code",
|
583 |
-
"execution_count":
|
584 |
"metadata": {},
|
585 |
-
"outputs": [
|
586 |
-
{
|
587 |
-
"data": {
|
588 |
-
"application/vnd.jupyter.widget-view+json": {
|
589 |
-
"model_id": "34f215d7229e419ba31b6db84d40dd4e",
|
590 |
-
"version_major": 2,
|
591 |
-
"version_minor": 0
|
592 |
-
},
|
593 |
-
"text/plain": [
|
594 |
-
"Downloading (…)lve/main/config.json: 0%| | 0.00/1.97k [00:00<?, ?B/s]"
|
595 |
-
]
|
596 |
-
},
|
597 |
-
"metadata": {},
|
598 |
-
"output_type": "display_data"
|
599 |
-
},
|
600 |
-
{
|
601 |
-
"data": {
|
602 |
-
"application/vnd.jupyter.widget-view+json": {
|
603 |
-
"model_id": "9a10f9361120449ba5cec6baaf0064b3",
|
604 |
-
"version_major": 2,
|
605 |
-
"version_minor": 0
|
606 |
-
},
|
607 |
-
"text/plain": [
|
608 |
-
"Downloading model.safetensors: 0%| | 0.00/967M [00:00<?, ?B/s]"
|
609 |
-
]
|
610 |
-
},
|
611 |
-
"metadata": {},
|
612 |
-
"output_type": "display_data"
|
613 |
-
},
|
614 |
-
{
|
615 |
-
"data": {
|
616 |
-
"application/vnd.jupyter.widget-view+json": {
|
617 |
-
"model_id": "37cb5f6cd0ec4c6c878d37afea648468",
|
618 |
-
"version_major": 2,
|
619 |
-
"version_minor": 0
|
620 |
-
},
|
621 |
-
"text/plain": [
|
622 |
-
"Downloading (…)neration_config.json: 0%| | 0.00/3.84k [00:00<?, ?B/s]"
|
623 |
-
]
|
624 |
-
},
|
625 |
-
"metadata": {},
|
626 |
-
"output_type": "display_data"
|
627 |
-
}
|
628 |
-
],
|
629 |
"source": [
|
630 |
"from transformers import WhisperForConditionalGeneration\n",
|
631 |
"\n",
|
@@ -634,7 +421,7 @@
|
|
634 |
},
|
635 |
{
|
636 |
"cell_type": "code",
|
637 |
-
"execution_count":
|
638 |
"metadata": {},
|
639 |
"outputs": [],
|
640 |
"source": [
|
@@ -645,7 +432,7 @@
|
|
645 |
},
|
646 |
{
|
647 |
"cell_type": "code",
|
648 |
-
"execution_count":
|
649 |
"metadata": {},
|
650 |
"outputs": [],
|
651 |
"source": [
|
@@ -677,7 +464,7 @@
|
|
677 |
},
|
678 |
{
|
679 |
"cell_type": "code",
|
680 |
-
"execution_count":
|
681 |
"metadata": {},
|
682 |
"outputs": [],
|
683 |
"source": [
|
@@ -696,7 +483,7 @@
|
|
696 |
},
|
697 |
{
|
698 |
"cell_type": "code",
|
699 |
-
"execution_count":
|
700 |
"metadata": {},
|
701 |
"outputs": [],
|
702 |
"source": [
|
@@ -705,41 +492,42 @@
|
|
705 |
},
|
706 |
{
|
707 |
"cell_type": "code",
|
708 |
-
"execution_count":
|
709 |
"metadata": {},
|
710 |
"outputs": [
|
711 |
{
|
712 |
"data": {
|
713 |
"application/vnd.jupyter.widget-view+json": {
|
714 |
-
"model_id": "
|
715 |
"version_major": 2,
|
716 |
"version_minor": 0
|
717 |
},
|
718 |
"text/plain": [
|
719 |
-
" 0%| | 0/
|
720 |
]
|
721 |
},
|
722 |
"metadata": {},
|
723 |
"output_type": "display_data"
|
724 |
},
|
725 |
{
|
726 |
-
"
|
727 |
-
"
|
728 |
-
"
|
729 |
-
|
730 |
-
"\
|
731 |
-
"
|
732 |
-
"
|
733 |
-
"
|
734 |
-
"
|
735 |
-
"
|
736 |
-
"
|
737 |
-
"
|
738 |
-
"
|
739 |
-
"
|
740 |
-
"
|
741 |
-
"
|
742 |
-
"
|
|
|
743 |
]
|
744 |
}
|
745 |
],
|
@@ -755,10 +543,10 @@
|
|
755 |
"outputs": [],
|
756 |
"source": [
|
757 |
"kwargs = {\n",
|
758 |
-
" \"dataset_tags\": \"
|
759 |
" \"dataset\": \"zeroth_korean\", # a 'pretty' name for the training dataset\n",
|
760 |
-
" \"language\": \"
|
761 |
-
" \"model_name\": \"Whisper Small
|
762 |
" \"finetuned_from\": \"openai/whisper-small\",\n",
|
763 |
" \"tasks\": \"automatic-speech-recognition\",\n",
|
764 |
" \"tags\": \"whisper-event\",\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
{
|
9 |
"name": "stdout",
|
10 |
"output_type": "stream",
|
|
|
35 |
},
|
36 |
{
|
37 |
"cell_type": "code",
|
38 |
+
"execution_count": 2,
|
39 |
"metadata": {},
|
40 |
"outputs": [
|
41 |
{
|
|
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
+
"execution_count": 3,
|
69 |
"metadata": {},
|
70 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"source": [
|
72 |
"from transformers import WhisperFeatureExtractor\n",
|
73 |
"\n",
|
|
|
76 |
},
|
77 |
{
|
78 |
"cell_type": "code",
|
79 |
+
"execution_count": 4,
|
80 |
"metadata": {},
|
81 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
{
|
83 |
"name": "stderr",
|
84 |
"output_type": "stream",
|
|
|
95 |
},
|
96 |
{
|
97 |
"cell_type": "code",
|
98 |
+
"execution_count": 5,
|
99 |
"metadata": {},
|
100 |
"outputs": [
|
101 |
{
|
|
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "code",
|
117 |
+
"execution_count": 6,
|
118 |
"metadata": {},
|
119 |
"outputs": [
|
120 |
{
|
|
|
132 |
},
|
133 |
{
|
134 |
"cell_type": "code",
|
135 |
+
"execution_count": 7,
|
136 |
"metadata": {},
|
137 |
"outputs": [],
|
138 |
"source": [
|
|
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "code",
|
147 |
+
"execution_count": 8,
|
148 |
"metadata": {},
|
149 |
"outputs": [
|
150 |
{
|
|
|
162 |
},
|
163 |
{
|
164 |
"cell_type": "code",
|
165 |
+
"execution_count": 9,
|
166 |
"metadata": {},
|
167 |
"outputs": [],
|
168 |
"source": [
|
|
|
176 |
},
|
177 |
{
|
178 |
"cell_type": "code",
|
179 |
+
"execution_count": 10,
|
180 |
"metadata": {},
|
181 |
"outputs": [],
|
182 |
"source": [
|
|
|
203 |
},
|
204 |
{
|
205 |
"cell_type": "code",
|
206 |
+
"execution_count": 11,
|
207 |
"metadata": {},
|
208 |
"outputs": [
|
209 |
{
|
210 |
"data": {
|
211 |
"application/vnd.jupyter.widget-view+json": {
|
212 |
+
"model_id": "0c3d689f889f4a71a6ffe0350727d7d7",
|
213 |
"version_major": 2,
|
214 |
"version_minor": 0
|
215 |
},
|
|
|
223 |
{
|
224 |
"data": {
|
225 |
"application/vnd.jupyter.widget-view+json": {
|
226 |
+
"model_id": "f28073a5c15944e9a9c7da6c994fb3da",
|
227 |
"version_major": 2,
|
228 |
"version_minor": 0
|
229 |
},
|
|
|
241 |
},
|
242 |
{
|
243 |
"cell_type": "code",
|
244 |
+
"execution_count": 12,
|
245 |
"metadata": {},
|
246 |
"outputs": [],
|
247 |
"source": [
|
|
|
254 |
},
|
255 |
{
|
256 |
"cell_type": "code",
|
257 |
+
"execution_count": 13,
|
258 |
"metadata": {},
|
259 |
"outputs": [
|
260 |
{
|
261 |
"data": {
|
262 |
"application/vnd.jupyter.widget-view+json": {
|
263 |
+
"model_id": "a0ff361ac7824e87a1360eb36314f126",
|
264 |
"version_major": 2,
|
265 |
"version_minor": 0
|
266 |
},
|
|
|
281 |
},
|
282 |
{
|
283 |
"cell_type": "code",
|
284 |
+
"execution_count": 14,
|
285 |
"metadata": {},
|
286 |
"outputs": [],
|
287 |
"source": [
|
|
|
320 |
},
|
321 |
{
|
322 |
"cell_type": "code",
|
323 |
+
"execution_count": 15,
|
324 |
"metadata": {},
|
325 |
"outputs": [],
|
326 |
"source": [
|
|
|
329 |
},
|
330 |
{
|
331 |
"cell_type": "code",
|
332 |
+
"execution_count": 16,
|
333 |
"metadata": {},
|
334 |
"outputs": [],
|
335 |
"source": [
|
|
|
340 |
},
|
341 |
{
|
342 |
"cell_type": "code",
|
343 |
+
"execution_count": 17,
|
344 |
"metadata": {},
|
345 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
"source": [
|
347 |
"from evaluate import load\n",
|
348 |
"cer_score = evaluate.load(\"cer\")"
|
|
|
380 |
},
|
381 |
{
|
382 |
"cell_type": "code",
|
383 |
+
"execution_count": 18,
|
384 |
"metadata": {},
|
385 |
"outputs": [],
|
386 |
"source": [
|
|
|
410 |
},
|
411 |
{
|
412 |
"cell_type": "code",
|
413 |
+
"execution_count": 19,
|
414 |
"metadata": {},
|
415 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
"source": [
|
417 |
"from transformers import WhisperForConditionalGeneration\n",
|
418 |
"\n",
|
|
|
421 |
},
|
422 |
{
|
423 |
"cell_type": "code",
|
424 |
+
"execution_count": 20,
|
425 |
"metadata": {},
|
426 |
"outputs": [],
|
427 |
"source": [
|
|
|
432 |
},
|
433 |
{
|
434 |
"cell_type": "code",
|
435 |
+
"execution_count": 21,
|
436 |
"metadata": {},
|
437 |
"outputs": [],
|
438 |
"source": [
|
|
|
464 |
},
|
465 |
{
|
466 |
"cell_type": "code",
|
467 |
+
"execution_count": 22,
|
468 |
"metadata": {},
|
469 |
"outputs": [],
|
470 |
"source": [
|
|
|
483 |
},
|
484 |
{
|
485 |
"cell_type": "code",
|
486 |
+
"execution_count": 23,
|
487 |
"metadata": {},
|
488 |
"outputs": [],
|
489 |
"source": [
|
|
|
492 |
},
|
493 |
{
|
494 |
"cell_type": "code",
|
495 |
+
"execution_count": 24,
|
496 |
"metadata": {},
|
497 |
"outputs": [
|
498 |
{
|
499 |
"data": {
|
500 |
"application/vnd.jupyter.widget-view+json": {
|
501 |
+
"model_id": "e65ce3bc72904c3999b034bfeb8a12b6",
|
502 |
"version_major": 2,
|
503 |
"version_minor": 0
|
504 |
},
|
505 |
"text/plain": [
|
506 |
+
" 0%| | 0/4000 [00:00<?, ?it/s]"
|
507 |
]
|
508 |
},
|
509 |
"metadata": {},
|
510 |
"output_type": "display_data"
|
511 |
},
|
512 |
{
|
513 |
+
"name": "stdout",
|
514 |
+
"output_type": "stream",
|
515 |
+
"text": [
|
516 |
+
"{'loss': 2.0528, 'learning_rate': 4.4e-07, 'epoch': 0.02}\n",
|
517 |
+
"{'loss': 1.6367, 'learning_rate': 9.400000000000001e-07, 'epoch': 0.04}\n",
|
518 |
+
"{'loss': 1.2439, 'learning_rate': 1.44e-06, 'epoch': 0.05}\n",
|
519 |
+
"{'loss': 0.7302, 'learning_rate': 1.94e-06, 'epoch': 0.07}\n",
|
520 |
+
"{'loss': 0.5361, 'learning_rate': 2.4400000000000004e-06, 'epoch': 0.09}\n",
|
521 |
+
"{'loss': 0.4687, 'learning_rate': 2.9400000000000002e-06, 'epoch': 0.11}\n",
|
522 |
+
"{'loss': 0.4293, 'learning_rate': 3.44e-06, 'epoch': 0.13}\n",
|
523 |
+
"{'loss': 0.3663, 'learning_rate': 3.94e-06, 'epoch': 0.14}\n",
|
524 |
+
"{'loss': 0.3301, 'learning_rate': 4.440000000000001e-06, 'epoch': 0.16}\n",
|
525 |
+
"{'loss': 0.3001, 'learning_rate': 4.94e-06, 'epoch': 0.18}\n",
|
526 |
+
"{'loss': 0.2242, 'learning_rate': 5.4400000000000004e-06, 'epoch': 0.2}\n",
|
527 |
+
"{'loss': 0.2262, 'learning_rate': 5.94e-06, 'epoch': 0.22}\n",
|
528 |
+
"{'loss': 0.2143, 'learning_rate': 6.440000000000001e-06, 'epoch': 0.23}\n",
|
529 |
+
"{'loss': 0.2019, 'learning_rate': 6.9400000000000005e-06, 'epoch': 0.25}\n",
|
530 |
+
"{'loss': 0.1992, 'learning_rate': 7.440000000000001e-06, 'epoch': 0.27}\n"
|
531 |
]
|
532 |
}
|
533 |
],
|
|
|
543 |
"outputs": [],
|
544 |
"source": [
|
545 |
"kwargs = {\n",
|
546 |
+
" \"dataset_tags\": \"kresnik/zeroth_korean\",\n",
|
547 |
" \"dataset\": \"zeroth_korean\", # a 'pretty' name for the training dataset\n",
|
548 |
+
" \"language\": \"ko\",\n",
|
549 |
+
" \"model_name\": \"Whisper Small Ko\", # a 'pretty' name for your model\n",
|
550 |
" \"finetuned_from\": \"openai/whisper-small\",\n",
|
551 |
" \"tasks\": \"automatic-speech-recognition\",\n",
|
552 |
" \"tags\": \"whisper-event\",\n",
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4155
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62c514187e98b3a26a315cb738cd44d24e71b91b83d22b4b6e336329fe80abf2
|
3 |
size 4155
|