|
from typing import Dict, List, Any
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor
|
|
import base64
|
|
import torch
|
|
from torch import nn
|
|
|
|
class EndpointHandler():
|
|
def __init__(self, path="."):
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
self.model = AutoModelForSemanticSegmentation.from_pretrained(path).to(self.device).eval()
|
|
self.feature_extractor = AutoFeatureExtractor.from_pretrained(path)
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
"""
|
|
data args:
|
|
images (:obj:`PIL.Image`)
|
|
candiates (:obj:`list`)
|
|
Return:
|
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
|
"""
|
|
inputs = data.pop("inputs", data)
|
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
|
|
|
|
|
encoding = self.feature_extractor(images=image, return_tensors="pt")
|
|
pixel_values = encoding["pixel_values"].to(self.device)
|
|
with torch.no_grad():
|
|
outputs = self.model(pixel_values=pixel_values)
|
|
logits = outputs.logits
|
|
upsampled_logits = nn.functional.interpolate(logits,
|
|
size=image.size[::-1],
|
|
mode="bilinear",
|
|
align_corners=False,)
|
|
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
|
return pred_seg.tolist()
|
|
|