Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,382 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
This
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
-
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
###
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
##
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
###
|
| 108 |
|
| 109 |
-
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
## Environmental Impact
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
##
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
##
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
|
| 191 |
-
[
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- question-answering
|
| 6 |
+
- bert
|
| 7 |
+
- squad
|
| 8 |
+
- extractive-qa
|
| 9 |
+
- baseline
|
| 10 |
+
datasets:
|
| 11 |
+
- squad
|
| 12 |
+
metrics:
|
| 13 |
+
- f1
|
| 14 |
+
- exact_match
|
| 15 |
+
model-index:
|
| 16 |
+
- name: bert-base-uncased-squad-baseline
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: question-answering
|
| 20 |
+
name: Question Answering
|
| 21 |
+
dataset:
|
| 22 |
+
name: SQuAD 1.1
|
| 23 |
+
type: squad
|
| 24 |
+
split: validation
|
| 25 |
+
metrics:
|
| 26 |
+
- type: exact_match
|
| 27 |
+
value: 79.45
|
| 28 |
+
name: Exact Match
|
| 29 |
+
- type: f1
|
| 30 |
+
value: 87.41
|
| 31 |
+
name: F1 Score
|
| 32 |
---
|
| 33 |
|
| 34 |
+
# BERT Base Uncased - SQuAD 1.1 Baseline
|
| 35 |
|
| 36 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the SQuAD 1.1 dataset for extractive question answering.
|
| 37 |
|
| 38 |
+
## Model Description
|
| 39 |
|
| 40 |
+
**BERT (Bidirectional Encoder Representations from Transformers)** fine-tuned on the Stanford Question Answering Dataset (SQuAD 1.1) to perform extractive question answering - finding the answer span within a given context passage.
|
| 41 |
|
| 42 |
+
- **Model Type:** Question Answering (Extractive)
|
| 43 |
+
- **Base Model:** `bert-base-uncased`
|
| 44 |
+
- **Language:** English
|
| 45 |
+
- **License:** Apache 2.0
|
| 46 |
+
- **Fine-tuned on:** SQuAD 1.1
|
| 47 |
+
- **Parameters:** 108,893,186 (all trainable)
|
| 48 |
|
| 49 |
+
## Intended Use
|
| 50 |
|
| 51 |
+
### Primary Use Cases
|
| 52 |
|
| 53 |
+
This model is designed for extractive question answering tasks where:
|
| 54 |
+
- The answer exists as a continuous span of text within the provided context
|
| 55 |
+
- Questions are factual and answerable from the context
|
| 56 |
+
- English language text processing
|
| 57 |
|
| 58 |
+
### Example Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
```python
|
| 61 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
| 62 |
|
| 63 |
+
# Load model and tokenizer
|
| 64 |
+
model = AutoModelForQuestionAnswering.from_pretrained("your-username/bert-squad-baseline")
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/bert-squad-baseline")
|
| 66 |
|
| 67 |
+
# Create QA pipeline
|
| 68 |
+
qa_pipeline = pipeline(
|
| 69 |
+
"question-answering",
|
| 70 |
+
model=model,
|
| 71 |
+
tokenizer=tokenizer
|
| 72 |
+
)
|
| 73 |
|
| 74 |
+
# Ask a question
|
| 75 |
+
context = """
|
| 76 |
+
The Amazon rainforest is a moist broadleaf tropical rainforest in the Amazon biome
|
| 77 |
+
that covers most of the Amazon basin of South America. This basin encompasses
|
| 78 |
+
7,000,000 km2 (2,700,000 sq mi), of which 5,500,000 km2 (2,100,000 sq mi) are
|
| 79 |
+
covered by the rainforest.
|
| 80 |
+
"""
|
| 81 |
|
| 82 |
+
question = "How large is the Amazon basin?"
|
| 83 |
|
| 84 |
+
result = qa_pipeline(question=question, context=context)
|
| 85 |
|
| 86 |
+
print(f"Answer: {result['answer']}")
|
| 87 |
+
print(f"Confidence: {result['score']:.4f}")
|
| 88 |
+
```
|
| 89 |
|
| 90 |
+
**Output:**
|
| 91 |
+
```
|
| 92 |
+
Answer: 7,000,000 km2
|
| 93 |
+
Confidence: 0.9234
|
| 94 |
+
```
|
| 95 |
|
| 96 |
+
### Direct Model Usage (without pipeline)
|
| 97 |
|
| 98 |
+
```python
|
| 99 |
+
import torch
|
| 100 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
| 101 |
|
| 102 |
+
model = AutoModelForQuestionAnswering.from_pretrained("your-username/bert-squad-baseline")
|
| 103 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/bert-squad-baseline")
|
| 104 |
|
| 105 |
+
question = "What is the capital of France?"
|
| 106 |
+
context = "Paris is the capital and largest city of France."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# Tokenize
|
| 109 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
| 110 |
|
| 111 |
+
# Get predictions
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
outputs = model(**inputs)
|
| 114 |
+
|
| 115 |
+
# Get answer span
|
| 116 |
+
answer_start = torch.argmax(outputs.start_logits)
|
| 117 |
+
answer_end = torch.argmax(outputs.end_logits) + 1
|
| 118 |
|
| 119 |
+
answer = tokenizer.convert_tokens_to_string(
|
| 120 |
+
tokenizer.convert_ids_to_tokens(inputs.input_ids[0][answer_start:answer_end])
|
| 121 |
+
)
|
| 122 |
|
| 123 |
+
print(f"Answer: {answer}")
|
| 124 |
+
```
|
| 125 |
|
| 126 |
+
## Training Data
|
| 127 |
|
| 128 |
+
### Dataset: SQuAD 1.1
|
| 129 |
|
| 130 |
+
The Stanford Question Answering Dataset (SQuAD) v1.1 consists of questions posed by crowdworkers on a set of Wikipedia articles.
|
| 131 |
|
| 132 |
+
**Training Set:**
|
| 133 |
+
- **Examples:** 87,599
|
| 134 |
+
- **Average question length:** 10.06 words
|
| 135 |
+
- **Average context length:** 119.76 words
|
| 136 |
+
- **Average answer length:** 3.16 words
|
| 137 |
|
| 138 |
+
**Validation Set:**
|
| 139 |
+
- **Examples:** 10,570
|
| 140 |
+
- **Average question length:** 10.22 words
|
| 141 |
+
- **Average context length:** 123.95 words
|
| 142 |
+
- **Average answer length:** 3.02 words
|
| 143 |
|
| 144 |
+
### Data Preprocessing
|
| 145 |
|
| 146 |
+
- **Tokenizer:** `bert-base-uncased`
|
| 147 |
+
- **Max sequence length:** 384 tokens
|
| 148 |
+
- **Stride:** 128 tokens (for handling long contexts)
|
| 149 |
+
- **Padding:** Maximum length
|
| 150 |
+
- **Truncation:** Only second sequence (context)
|
| 151 |
|
| 152 |
+
Long contexts are split into multiple features with overlapping windows to ensure answers aren't lost at sequence boundaries.
|
| 153 |
|
| 154 |
+
## Training Procedure
|
| 155 |
|
| 156 |
+
### Training Hyperparameters
|
| 157 |
|
| 158 |
+
| Parameter | Value |
|
| 159 |
+
|-----------|-------|
|
| 160 |
+
| **Base model** | bert-base-uncased |
|
| 161 |
+
| **Optimizer** | AdamW |
|
| 162 |
+
| **Learning rate** | 3e-5 |
|
| 163 |
+
| **Learning rate schedule** | Linear with warmup |
|
| 164 |
+
| **Warmup ratio** | 0.1 (10% of training) |
|
| 165 |
+
| **Weight decay** | 0.01 |
|
| 166 |
+
| **Batch size (train)** | 8 |
|
| 167 |
+
| **Batch size (eval)** | 8 |
|
| 168 |
+
| **Number of epochs** | 1 |
|
| 169 |
+
| **Mixed precision** | FP16 (enabled) |
|
| 170 |
+
| **Gradient accumulation** | 1 |
|
| 171 |
+
| **Max gradient norm** | 1.0 |
|
| 172 |
|
| 173 |
+
### Training Environment
|
| 174 |
|
| 175 |
+
- **Hardware:** NVIDIA GPU (CUDA enabled)
|
| 176 |
+
- **Framework:** PyTorch with Transformers library
|
| 177 |
+
- **Training time:** ~29.5 minutes (1 epoch)
|
| 178 |
+
- **Training samples/second:** 44.95
|
| 179 |
+
- **Total FLOPs:** 14,541,777 GF
|
| 180 |
|
| 181 |
+
### Training Metrics
|
| 182 |
|
| 183 |
+
- **Final training loss:** 1.2236
|
| 184 |
+
- **Evaluation strategy:** End of epoch
|
| 185 |
+
- **Metric for best model:** Evaluation loss
|
| 186 |
|
| 187 |
+
## Performance
|
| 188 |
|
| 189 |
+
### Evaluation Results
|
| 190 |
|
| 191 |
+
Evaluated on SQuAD 1.1 validation set (10,570 examples):
|
| 192 |
|
| 193 |
+
| Metric | Score |
|
| 194 |
+
|--------|-------|
|
| 195 |
+
| **Exact Match (EM)** | **79.45%** |
|
| 196 |
+
| **F1 Score** | **87.41%** |
|
| 197 |
|
| 198 |
+
### Metric Explanations
|
| 199 |
|
| 200 |
+
- **Exact Match (EM):** Percentage of predictions that match the ground truth answer exactly
|
| 201 |
+
- **F1 Score:** Token-level F1 score measuring overlap between predicted and ground truth answers
|
| 202 |
|
| 203 |
+
### Comparison to BERT Base Performance
|
| 204 |
|
| 205 |
+
| Model | EM | F1 | Training |
|
| 206 |
+
|-------|----|----|----------|
|
| 207 |
+
| **This model (1 epoch)** | 79.45 | 87.41 | 29.5 min |
|
| 208 |
+
| BERT Base (original paper, 3 epochs) | 80.8 | 88.5 | ~2-3 hours |
|
| 209 |
+
| BERT Base (fully trained) | 81-84 | 88-91 | ~2-3 hours |
|
| 210 |
|
| 211 |
+
**Note:** This is a baseline model trained for only 1 epoch. Performance can be improved with additional training epochs.
|
| 212 |
|
| 213 |
+
### Performance by Question Type
|
| 214 |
|
| 215 |
+
The model performs well on:
|
| 216 |
+
- ✅ Factual questions (What, When, Where, Who)
|
| 217 |
+
- ✅ Short answer spans (1-5 words)
|
| 218 |
+
- ✅ Questions with clear context
|
| 219 |
|
| 220 |
+
May struggle with:
|
| 221 |
+
- ⚠️ Questions requiring reasoning across multiple sentences
|
| 222 |
+
- ⚠️ Very long answer spans
|
| 223 |
+
- ⚠️ Ambiguous questions with multiple valid answers
|
| 224 |
+
- ⚠️ Questions requiring world knowledge not in context
|
| 225 |
|
| 226 |
+
## Limitations and Biases
|
| 227 |
|
| 228 |
+
### Known Limitations
|
| 229 |
|
| 230 |
+
1. **Extractive Only:** Can only extract answers present in the context; cannot generate or synthesize answers
|
| 231 |
+
2. **Single Answer:** Provides only one answer span, even if multiple valid answers exist
|
| 232 |
+
3. **Context Dependency:** Requires relevant context; cannot answer from general knowledge
|
| 233 |
+
4. **Length Constraints:** Limited to 384 tokens per context window
|
| 234 |
+
5. **English Only:** Trained on English text; not suitable for other languages
|
| 235 |
+
6. **Training Duration:** Only 1 epoch of training; may underfit compared to longer training
|
| 236 |
|
| 237 |
+
### Potential Biases
|
| 238 |
|
| 239 |
+
- **Domain Bias:** Trained primarily on Wikipedia articles; may perform worse on other text types (news, technical docs, etc.)
|
| 240 |
+
- **Temporal Bias:** Training data from 2016; may have outdated information
|
| 241 |
+
- **Cultural Bias:** Reflects biases present in Wikipedia content
|
| 242 |
+
- **Answer Position Bias:** May favor answers appearing in certain positions within context
|
| 243 |
+
- **BERT Base Biases:** Inherits any biases from the pre-trained BERT base model
|
| 244 |
|
| 245 |
+
### Out-of-Scope Use
|
| 246 |
|
| 247 |
+
This model should NOT be used for:
|
| 248 |
+
- ❌ Medical, legal, or financial advice
|
| 249 |
+
- ❌ High-stakes decision making
|
| 250 |
+
- ❌ Generative question answering (creating new answers)
|
| 251 |
+
- ❌ Non-English languages
|
| 252 |
+
- ❌ Yes/no or multiple choice questions (without adaptation)
|
| 253 |
+
- ❌ Questions requiring reasoning beyond the context
|
| 254 |
+
- ❌ Real-time fact checking or verification
|
| 255 |
+
|
| 256 |
+
## Technical Specifications
|
| 257 |
+
|
| 258 |
+
### Model Architecture
|
| 259 |
+
|
| 260 |
+
```
|
| 261 |
+
BertForQuestionAnswering(
|
| 262 |
+
(bert): BertModel(
|
| 263 |
+
(embeddings): BertEmbeddings
|
| 264 |
+
(encoder): BertEncoder (12 layers)
|
| 265 |
+
(pooler): BertPooler
|
| 266 |
+
)
|
| 267 |
+
(qa_outputs): Linear(768 -> 2) # Start and end position logits
|
| 268 |
+
)
|
| 269 |
+
```
|
| 270 |
+
|
| 271 |
+
- **Hidden size:** 768
|
| 272 |
+
- **Attention heads:** 12
|
| 273 |
+
- **Intermediate size:** 3072
|
| 274 |
+
- **Hidden layers:** 12
|
| 275 |
+
- **Vocabulary size:** 30,522
|
| 276 |
+
- **Max position embeddings:** 512
|
| 277 |
+
- **Total parameters:** 108,893,186
|
| 278 |
+
|
| 279 |
+
### Input Format
|
| 280 |
+
|
| 281 |
+
The model expects tokenized input with:
|
| 282 |
+
- Question and context concatenated with `[SEP]` token
|
| 283 |
+
- Format: `[CLS] question [SEP] context [SEP]`
|
| 284 |
+
- Token type IDs to distinguish question (0) from context (1)
|
| 285 |
+
- Attention mask to identify real vs padding tokens
|
| 286 |
+
|
| 287 |
+
### Output Format
|
| 288 |
+
|
| 289 |
+
Returns:
|
| 290 |
+
- `start_logits`: Scores for each token being the start of the answer span
|
| 291 |
+
- `end_logits`: Scores for each token being the end of the answer span
|
| 292 |
+
|
| 293 |
+
The predicted answer is the span from token with highest start_logit to token with highest end_logit (where end >= start).
|
| 294 |
+
|
| 295 |
+
## Evaluation Data
|
| 296 |
+
|
| 297 |
+
**SQuAD 1.1 Validation Set**
|
| 298 |
+
- 10,570 question-context-answer triples
|
| 299 |
+
- Same source and format as training data
|
| 300 |
+
- Used for final performance evaluation
|
| 301 |
|
| 302 |
## Environmental Impact
|
| 303 |
|
| 304 |
+
- **Training hardware:** 1x NVIDIA GPU
|
| 305 |
+
- **Training time:** ~29.5 minutes
|
| 306 |
+
- **Compute region:** Not specified
|
| 307 |
+
- **Carbon footprint:** Estimated minimal due to short training time
|
| 308 |
|
| 309 |
+
## Model Card Authors
|
| 310 |
|
| 311 |
+
[Your Name / Team Name]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
+
## Model Card Contact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
+
[Your Email / Contact Information]
|
| 316 |
|
| 317 |
+
## Citation
|
| 318 |
|
| 319 |
+
If you use this model, please cite:
|
| 320 |
|
| 321 |
+
```bibtex
|
| 322 |
+
@misc{bert-squad-baseline-2025,
|
| 323 |
+
author = {Your Name},
|
| 324 |
+
title = {BERT Base Uncased Fine-tuned on SQuAD 1.1 (Baseline)},
|
| 325 |
+
year = {2025},
|
| 326 |
+
publisher = {HuggingFace},
|
| 327 |
+
howpublished = {\url{https://huggingface.co/your-username/bert-squad-baseline}}
|
| 328 |
+
}
|
| 329 |
+
```
|
| 330 |
|
| 331 |
+
### Original BERT Paper
|
| 332 |
|
| 333 |
+
```bibtex
|
| 334 |
+
@article{devlin2018bert,
|
| 335 |
+
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
|
| 336 |
+
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
|
| 337 |
+
journal={arXiv preprint arXiv:1810.04805},
|
| 338 |
+
year={2018}
|
| 339 |
+
}
|
| 340 |
+
```
|
| 341 |
|
| 342 |
+
### SQuAD Dataset
|
| 343 |
|
| 344 |
+
```bibtex
|
| 345 |
+
@article{rajpurkar2016squad,
|
| 346 |
+
title={SQuAD: 100,000+ Questions for Machine Comprehension of Text},
|
| 347 |
+
author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
|
| 348 |
+
journal={arXiv preprint arXiv:1606.05250},
|
| 349 |
+
year={2016}
|
| 350 |
+
}
|
| 351 |
+
```
|
| 352 |
|
| 353 |
+
## Additional Information
|
| 354 |
|
| 355 |
+
### Future Improvements
|
| 356 |
|
| 357 |
+
Potential enhancements for this baseline model:
|
| 358 |
+
- 🔄 Train for additional epochs (2-3 epochs recommended)
|
| 359 |
+
- 📈 Increase batch size with gradient accumulation
|
| 360 |
+
- 🎯 Implement learning rate scheduling
|
| 361 |
+
- 🔍 Add answer validation/verification
|
| 362 |
+
- 📊 Ensemble with multiple models
|
| 363 |
+
- 🚀 Distillation to smaller model for deployment
|
| 364 |
|
| 365 |
+
### Related Models
|
| 366 |
|
| 367 |
+
- [bert-base-uncased](https://huggingface.co/bert-base-uncased) - Base model
|
| 368 |
+
- [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) - Larger BERT variant
|
| 369 |
+
- [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) - Smaller, faster variant
|
| 370 |
|
| 371 |
+
### Acknowledgments
|
| 372 |
|
| 373 |
+
- Google Research for BERT
|
| 374 |
+
- Stanford NLP for SQuAD dataset
|
| 375 |
+
- Hugging Face for Transformers library
|
| 376 |
+
- [Your course/institution if applicable]
|
| 377 |
|
| 378 |
+
---
|
| 379 |
|
| 380 |
+
**Last updated:** October 2025
|
| 381 |
+
**Model version:** 1.0 (Baseline)
|
| 382 |
+
**Status:** Baseline model - suitable for development/comparison
|