FumaNet commited on
Commit
e44c7f5
·
1 Parent(s): bc28b68

one MILLION $!

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 261.60 +/- 27.38
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f74c03b30e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f74c03b3170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74c03b3200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f74c03b3290>", "_build": "<function ActorCriticPolicy._build at 0x7f74c03b3320>", "forward": "<function ActorCriticPolicy.forward at 0x7f74c03b33b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f74c03b3440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f74c03b34d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f74c03b3560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74c03b35f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f74c03b3680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f74c03ff690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652529878.8505113, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPTTzopHBm6vgdbOrEFQDVbZ/06ONp9uQAAgD8AAIA/AOhRPB9F6LnJSg45AGY9s47vwrvxnSa4AACAPwAAgD9N1pW9j4ZQuv9vJDmm8RQ0MYNFumIBQrgAAIA/AACAP1NyPT4pRqo/XFOiPnlR0b6CvEk+rIuuPQAAAAAAAAAAmjiwPPYIHLrLdWG7RO93OM/7L7tvzJM5AACAPwAAgD9mSvI9zBADP0pNkb3+DpG+qT53PJ9LlL0AAAAAAAAAABq20L2Peia61qliuVZDi7QwIX87UiODOAAAgD8AAIA/MzQ6PY8WcrrZApc3xBapMsFAAjqOtbC2AACAPwAAgD8A+YK95H+BP0RDnjxun8G+mPawvGaGlrkAAAAAAAAAAIDmF724jvy5AwWwu06jhDgMCp47iEixOAAAgD8AAIA/5jFzvfd0KD87aZa8Jy+gvqr4rLxBHKa9AAAAAAAAAAAzTvk8j6ZXuvdGrrq8IKq1MlZ7ujA7zDkAAIA/AACAPzMujb3D4Vy6YFCPubwlNzOHpm66+FulOAAAgD8AAIA/c7vKPSlsULqwO165Vw6jtEGEHTtezoE4AACAPwAAgD+aC+a8w8FJuhNV0jtwRWY3gceBuOLOVDYAAIA/AACAP0AVsT0qpiU+5P+XPE1Pbb7tg648lmzcPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2NKjqd6mcUCUhpRSlIwBbJRNewGMAXSUR0CufTkAo5PudX2UKGgGaAloD0MIEodsIJ2icECUhpRSlGgVTVkCaBZHQK605CHARCh1fZQoaAZoCWgPQwiWW1oNCeNuQJSGlFKUaBVNCQNoFkdArrWgFkhA4XV9lChoBmgJaA9DCI4glWLHLmNAlIaUUpRoFU3oA2gWR0CuthNlI3BIdX2UKGgGaAloD0MIMgVrnM2iY0CUhpRSlGgVTegDaBZHQK62KD+zdDZ1fZQoaAZoCWgPQwidgCbChqFgQJSGlFKUaBVN6ANoFkdArrayQ9zOo3V9lChoBmgJaA9DCNtv7USJZnJAlIaUUpRoFU1TAmgWR0CuuIopQUHqdX2UKGgGaAloD0MICBwJNFhuZECUhpRSlGgVTegDaBZHQK64nTsIE8t1fZQoaAZoCWgPQwjmIynpYddiQJSGlFKUaBVN6ANoFkdArrqW4wyqMnV9lChoBmgJaA9DCBhbCHIQrHBAlIaUUpRoFU1tAmgWR0Cuuw6TGHYZdX2UKGgGaAloD0MIk1Z8QyGdckCUhpRSlGgVTRcBaBZHQK67SyeI2wV1fZQoaAZoCWgPQwi6pGq7CVNkQJSGlFKUaBVN6ANoFkdArrxzNGEwnHV9lChoBmgJaA9DCFeYvtfQiHFAlIaUUpRoFU1mAWgWR0Cuvb3KSxJNdX2UKGgGaAloD0MIBRiWP1/1ZECUhpRSlGgVTegDaBZHQK691gmZ3LV1fZQoaAZoCWgPQwgMdVjhlrRmQJSGlFKUaBVN6ANoFkdArr4OK8+Ro3V9lChoBmgJaA9DCAsOL4jI1WJAlIaUUpRoFU3oA2gWR0CuvqaFM7EHdX2UKGgGaAloD0MIWG/UClP/cECUhpRSlGgVTYEBaBZHQK6+0tmtheB1fZQoaAZoCWgPQwiZSdQLPrxjQJSGlFKUaBVN6ANoFkdArsAsXxe9jHV9lChoBmgJaA9DCBR4J5+eT3BAlIaUUpRoFU1BA2gWR0CuwH+gDifhdX2UKGgGaAloD0MIYto39xdMcECUhpRSlGgVTU8BaBZHQK7CnGBFuvV1fZQoaAZoCWgPQwgVxhaCHFBoQJSGlFKUaBVN6ANoFkdArsKpyhi9ZnV9lChoBmgJaA9DCMhBCTOtW3BAlIaUUpRoFU1ZAWgWR0CuxHALRa5gdX2UKGgGaAloD0MI5/wUx8E1cECUhpRSlGgVTYsCaBZHQK7FnILgGbF1fZQoaAZoCWgPQwhW0opvKF1sQJSGlFKUaBVNKwFoFkdArsXVfgJkXnV9lChoBmgJaA9DCN8a2CpBwm5AlIaUUpRoFU2wAWgWR0CuyG1qnFYMdX2UKGgGaAloD0MI8Q2Fz9aQa0CUhpRSlGgVTSgDaBZHQK7I/yzXz191fZQoaAZoCWgPQwhaDvRQmzRyQJSGlFKUaBVN5gFoFkdArsl+QuEmIHV9lChoBmgJaA9DCDtREhIpAnBAlIaUUpRoFU2CAmgWR0CuysWAXl8xdX2UKGgGaAloD0MI/YUeMXrObECUhpRSlGgVTUUCaBZHQK7PpCP6sQx1fZQoaAZoCWgPQwgt6L0xRNZxQJSGlFKUaBVNdwJoFkdArtCeRDCxeXV9lChoBmgJaA9DCPj6Wpeam2JAlIaUUpRoFU3oA2gWR0Cu0Vnt4RmLdX2UKGgGaAloD0MIRwVOtgF1ZkCUhpRSlGgVTegDaBZHQK7RbjNIK+l1fZQoaAZoCWgPQwiwyRr1EIlsQJSGlFKUaBVNCQJoFkdArtJyHXVbzXV9lChoBmgJaA9DCITZBBiWx25AlIaUUpRoFU01A2gWR0Cu06LAHmihdX2UKGgGaAloD0MIlba4xmc5aECUhpRSlGgVTegDaBZHQK7TvGBnSOR1fZQoaAZoCWgPQwibyTfb3MFwQJSGlFKUaBVNfQFoFkdArtPPLaEi+3V9lChoBmgJaA9DCLwft1++BnFAlIaUUpRoFU2XAmgWR0Cu1CouGsV+dX2UKGgGaAloD0MIiQeUTTkQbkCUhpRSlGgVTTsCaBZHQK7U2yHmA9V1fZQoaAZoCWgPQwhlNsgko05vQJSGlFKUaBVNcAJoFkdArtW+sJY1YXV9lChoBmgJaA9DCDHT9q+ss2hAlIaUUpRoFU3oA2gWR0Cu1pxOtW+5dX2UKGgGaAloD0MIcEIhAs5AcUCUhpRSlGgVTW4CaBZHQK7YGE25xzd1fZQoaAZoCWgPQwhqvd9ohwxwQJSGlFKUaBVNeAFoFkdArtl/X7Lt/nV9lChoBmgJaA9DCAa9N4YAJXJAlIaUUpRoFU0rAWgWR0Cu20Ifr8iwdX2UKGgGaAloD0MI9Bd6xOjXYUCUhpRSlGgVTegDaBZHQK7cVlsguAZ1fZQoaAZoCWgPQwh1OpD1VNJvQJSGlFKUaBVN/wFoFkdArt4cbm2b5XV9lChoBmgJaA9DCIW0xqCT/2NAlIaUUpRoFU3oA2gWR0Cu47Vj7Q9idX2UKGgGaAloD0MIwOeHEQLIckCUhpRSlGgVTQICaBZHQK7j8idrftR1fZQoaAZoCWgPQwiq7/yiBGRmQJSGlFKUaBVN6ANoFkdArxSqHIp6QnV9lChoBmgJaA9DCOnwEMaPeXBAlIaUUpRoFU23AmgWR0CvFU1iF0xNdX2UKGgGaAloD0MIQ8u6f6zdbUCUhpRSlGgVTSIDaBZHQK8YZCOWBz51fZQoaAZoCWgPQwjncK32sGJwQJSGlFKUaBVNxgFoFkdArxh/ARChOHV9lChoBmgJaA9DCCegibChe3JAlIaUUpRoFU0BAmgWR0CvGQtaQmu1dX2UKGgGaAloD0MIWqDdIUWgYECUhpRSlGgVTegDaBZHQK8ZXLQokRl1fZQoaAZoCWgPQwhfDVAa6qpvQJSGlFKUaBVNUAJoFkdArxloDJU5uXV9lChoBmgJaA9DCGYyHM/ndG5AlIaUUpRoFU0iA2gWR0CvGZPpyIYWdX2UKGgGaAloD0MIzVzg8lgiZECUhpRSlGgVTegDaBZHQK8au6GQCCB1fZQoaAZoCWgPQwhpOGVuvsBhQJSGlFKUaBVN6ANoFkdArxuqIWP91nV9lChoBmgJaA9DCPAw7Zt7e2RAlIaUUpRoFU3oA2gWR0CvHJiRwIdEdX2UKGgGaAloD0MIRbk0fiE0cECUhpRSlGgVTW4DaBZHQK8dDf51vEV1fZQoaAZoCWgPQwjMsieBzUdOQJSGlFKUaBVNCwFoFkdArx4lj3Ehq3V9lChoBmgJaA9DCC0GD9O+G1NAlIaUUpRoFU0VAWgWR0CvH2izkZJkdX2UKGgGaAloD0MITFEujZ+AcECUhpRSlGgVTRoBaBZHQK8gsf4h2W91fZQoaAZoCWgPQwiDaK1o8zNhQJSGlFKUaBVN6ANoFkdAryDxhWo3rHV9lChoBmgJaA9DCLpoyHjUInFAlIaUUpRoFU2RAWgWR0CvIRdWhh6TdX2UKGgGaAloD0MIdNTRcTUsbkCUhpRSlGgVTYoCaBZHQK8iFSAH3UR1fZQoaAZoCWgPQwjXL9gNW9VwQJSGlFKUaBVNbwJoFkdAryNEU9IPLHV9lChoBmgJaA9DCGNH41C/1W5AlIaUUpRoFU14AWgWR0CvJOwHiWE9dX2UKGgGaAloD0MIlzyelh/hZECUhpRSlGgVTegDaBZHQK8lbjRUm2N1fZQoaAZoCWgPQwh/iA0WDqFxQJSGlFKUaBVNMQNoFkdArycqwY+B6XV9lChoBmgJaA9DCIxMwK/RkXFAlIaUUpRoFU2vAmgWR0CvKDcqe9SNdX2UKGgGaAloD0MI226CbxpJaUCUhpRSlGgVTegDaBZHQK8qAYb83uN1fZQoaAZoCWgPQwgTK6ORjydzQJSGlFKUaBVNkQJoFkdAryoT4+KTCHV9lChoBmgJaA9DCMsuGFzzkWxAlIaUUpRoFU2LAWgWR0CvK071h9b5dX2UKGgGaAloD0MI7KNTVz5CcUCUhpRSlGgVTVgBaBZHQK8tZSiudPN1fZQoaAZoCWgPQwj4im695p5xQJSGlFKUaBVNtgNoFkdAry6IqiGnGnV9lChoBmgJaA9DCAmH3uLhT3BAlIaUUpRoFU3SAWgWR0CvLpjtgKF7dX2UKGgGaAloD0MIqOUHrrIjcECUhpRSlGgVTaUCaBZHQK8vOBeXzDp1fZQoaAZoCWgPQwhiaksd5LplQJSGlFKUaBVN6ANoFkdArzAON5t3wHV9lChoBmgJaA9DCAyuuaP/qnJAlIaUUpRoFU2YAWgWR0CvMk7ALy+YdX2UKGgGaAloD0MIF9NM9zpqZECUhpRSlGgVTegDaBZHQK8zm5wOvuB1fZQoaAZoCWgPQwiQ+BVruBZhQJSGlFKUaBVN6ANoFkdArzWEz2vjfnV9lChoBmgJaA9DCET8w5aecnBAlIaUUpRoFU3hAWgWR0CvNd/zBhx6dX2UKGgGaAloD0MItHIvMKtXbUCUhpRSlGgVTfkBaBZHQK82WwVTJhh1fZQoaAZoCWgPQwiKjuTyHwlyQJSGlFKUaBVNYwFoFkdArzcF0NjLCHV9lChoBmgJaA9DCM+idyqg03BAlIaUUpRoFU26AWgWR0CvOAKSowVTdX2UKGgGaAloD0MIRyBe1y8CZUCUhpRSlGgVTegDaBZHQK84P6vaDf51fZQoaAZoCWgPQwh8KTxoduFkQJSGlFKUaBVN6ANoFkdArzh/JYDDCXV9lChoBmgJaA9DCO9054nn2GRAlIaUUpRoFU3oA2gWR0CvOKLwF1SwdX2UKGgGaAloD0MIMV7zqs4KSkCUhpRSlGgVS9loFkdArzixWzWwvHV9lChoBmgJaA9DCIVbPpKSdnFAlIaUUpRoFU34AmgWR0CvOWDABT4tdX2UKGgGaAloD0MIKJoHsEi6cUCUhpRSlGgVTfUBaBZHQK86gz4UN8V1fZQoaAZoCWgPQwgNUYU/Q71wQJSGlFKUaBVNKwFoFkdArzvDlDF6zHV9lChoBmgJaA9DCMSXiSIkHGZAlIaUUpRoFU3oA2gWR0CvPMd2X9iudX2UKGgGaAloD0MIBaVo5d72bUCUhpRSlGgVTRoBaBZHQK88004zabp1fZQoaAZoCWgPQwhXIeUn1a5wQJSGlFKUaBVNdgJoFkdArz4bpC8e0XV9lChoBmgJaA9DCLWK/tDM53JAlIaUUpRoFU2dAWgWR0CvPzJaA4GVdX2UKGgGaAloD0MIxvmbUIjNb0CUhpRSlGgVTXwBaBZHQK9AHxpcoph1fZQoaAZoCWgPQwgRpiiXxj1PQJSGlFKUaBVL5mgWR0CvQRefRNRFdX2UKGgGaAloD0MIV5V9VwTqcECUhpRSlGgVTdEBaBZHQK9Cb6zmfXh1fZQoaAZoCWgPQwjZPXlYqDxoQJSGlFKUaBVN6ANoFkdAr0Jw1DSgG3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ll2-ppo-default.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0a509bd57f6fe915d97f1728834a358f8bf21ef76589cce60a58a7c5a47f6ab
3
+ size 144114
ll2-ppo-default/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ll2-ppo-default/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f74c03b30e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f74c03b3170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74c03b3200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f74c03b3290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f74c03b3320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f74c03b33b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f74c03b3440>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f74c03b34d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f74c03b3560>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74c03b35f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f74c03b3680>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f74c03ff690>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652529878.8505113,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPTTzopHBm6vgdbOrEFQDVbZ/06ONp9uQAAgD8AAIA/AOhRPB9F6LnJSg45AGY9s47vwrvxnSa4AACAPwAAgD9N1pW9j4ZQuv9vJDmm8RQ0MYNFumIBQrgAAIA/AACAP1NyPT4pRqo/XFOiPnlR0b6CvEk+rIuuPQAAAAAAAAAAmjiwPPYIHLrLdWG7RO93OM/7L7tvzJM5AACAPwAAgD9mSvI9zBADP0pNkb3+DpG+qT53PJ9LlL0AAAAAAAAAABq20L2Peia61qliuVZDi7QwIX87UiODOAAAgD8AAIA/MzQ6PY8WcrrZApc3xBapMsFAAjqOtbC2AACAPwAAgD8A+YK95H+BP0RDnjxun8G+mPawvGaGlrkAAAAAAAAAAIDmF724jvy5AwWwu06jhDgMCp47iEixOAAAgD8AAIA/5jFzvfd0KD87aZa8Jy+gvqr4rLxBHKa9AAAAAAAAAAAzTvk8j6ZXuvdGrrq8IKq1MlZ7ujA7zDkAAIA/AACAPzMujb3D4Vy6YFCPubwlNzOHpm66+FulOAAAgD8AAIA/c7vKPSlsULqwO165Vw6jtEGEHTtezoE4AACAPwAAgD+aC+a8w8FJuhNV0jtwRWY3gceBuOLOVDYAAIA/AACAP0AVsT0qpiU+5P+XPE1Pbb7tg648lmzcPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2NKjqd6mcUCUhpRSlIwBbJRNewGMAXSUR0CufTkAo5PudX2UKGgGaAloD0MIEodsIJ2icECUhpRSlGgVTVkCaBZHQK605CHARCh1fZQoaAZoCWgPQwiWW1oNCeNuQJSGlFKUaBVNCQNoFkdArrWgFkhA4XV9lChoBmgJaA9DCI4glWLHLmNAlIaUUpRoFU3oA2gWR0CuthNlI3BIdX2UKGgGaAloD0MIMgVrnM2iY0CUhpRSlGgVTegDaBZHQK62KD+zdDZ1fZQoaAZoCWgPQwidgCbChqFgQJSGlFKUaBVN6ANoFkdArrayQ9zOo3V9lChoBmgJaA9DCNtv7USJZnJAlIaUUpRoFU1TAmgWR0CuuIopQUHqdX2UKGgGaAloD0MICBwJNFhuZECUhpRSlGgVTegDaBZHQK64nTsIE8t1fZQoaAZoCWgPQwjmIynpYddiQJSGlFKUaBVN6ANoFkdArrqW4wyqMnV9lChoBmgJaA9DCBhbCHIQrHBAlIaUUpRoFU1tAmgWR0Cuuw6TGHYZdX2UKGgGaAloD0MIk1Z8QyGdckCUhpRSlGgVTRcBaBZHQK67SyeI2wV1fZQoaAZoCWgPQwi6pGq7CVNkQJSGlFKUaBVN6ANoFkdArrxzNGEwnHV9lChoBmgJaA9DCFeYvtfQiHFAlIaUUpRoFU1mAWgWR0Cuvb3KSxJNdX2UKGgGaAloD0MIBRiWP1/1ZECUhpRSlGgVTegDaBZHQK691gmZ3LV1fZQoaAZoCWgPQwgMdVjhlrRmQJSGlFKUaBVN6ANoFkdArr4OK8+Ro3V9lChoBmgJaA9DCAsOL4jI1WJAlIaUUpRoFU3oA2gWR0CuvqaFM7EHdX2UKGgGaAloD0MIWG/UClP/cECUhpRSlGgVTYEBaBZHQK6+0tmtheB1fZQoaAZoCWgPQwiZSdQLPrxjQJSGlFKUaBVN6ANoFkdArsAsXxe9jHV9lChoBmgJaA9DCBR4J5+eT3BAlIaUUpRoFU1BA2gWR0CuwH+gDifhdX2UKGgGaAloD0MIYto39xdMcECUhpRSlGgVTU8BaBZHQK7CnGBFuvV1fZQoaAZoCWgPQwgVxhaCHFBoQJSGlFKUaBVN6ANoFkdArsKpyhi9ZnV9lChoBmgJaA9DCMhBCTOtW3BAlIaUUpRoFU1ZAWgWR0CuxHALRa5gdX2UKGgGaAloD0MI5/wUx8E1cECUhpRSlGgVTYsCaBZHQK7FnILgGbF1fZQoaAZoCWgPQwhW0opvKF1sQJSGlFKUaBVNKwFoFkdArsXVfgJkXnV9lChoBmgJaA9DCN8a2CpBwm5AlIaUUpRoFU2wAWgWR0CuyG1qnFYMdX2UKGgGaAloD0MI8Q2Fz9aQa0CUhpRSlGgVTSgDaBZHQK7I/yzXz191fZQoaAZoCWgPQwhaDvRQmzRyQJSGlFKUaBVN5gFoFkdArsl+QuEmIHV9lChoBmgJaA9DCDtREhIpAnBAlIaUUpRoFU2CAmgWR0CuysWAXl8xdX2UKGgGaAloD0MI/YUeMXrObECUhpRSlGgVTUUCaBZHQK7PpCP6sQx1fZQoaAZoCWgPQwgt6L0xRNZxQJSGlFKUaBVNdwJoFkdArtCeRDCxeXV9lChoBmgJaA9DCPj6Wpeam2JAlIaUUpRoFU3oA2gWR0Cu0Vnt4RmLdX2UKGgGaAloD0MIRwVOtgF1ZkCUhpRSlGgVTegDaBZHQK7RbjNIK+l1fZQoaAZoCWgPQwiwyRr1EIlsQJSGlFKUaBVNCQJoFkdArtJyHXVbzXV9lChoBmgJaA9DCITZBBiWx25AlIaUUpRoFU01A2gWR0Cu06LAHmihdX2UKGgGaAloD0MIlba4xmc5aECUhpRSlGgVTegDaBZHQK7TvGBnSOR1fZQoaAZoCWgPQwibyTfb3MFwQJSGlFKUaBVNfQFoFkdArtPPLaEi+3V9lChoBmgJaA9DCLwft1++BnFAlIaUUpRoFU2XAmgWR0Cu1CouGsV+dX2UKGgGaAloD0MIiQeUTTkQbkCUhpRSlGgVTTsCaBZHQK7U2yHmA9V1fZQoaAZoCWgPQwhlNsgko05vQJSGlFKUaBVNcAJoFkdArtW+sJY1YXV9lChoBmgJaA9DCDHT9q+ss2hAlIaUUpRoFU3oA2gWR0Cu1pxOtW+5dX2UKGgGaAloD0MIcEIhAs5AcUCUhpRSlGgVTW4CaBZHQK7YGE25xzd1fZQoaAZoCWgPQwhqvd9ohwxwQJSGlFKUaBVNeAFoFkdArtl/X7Lt/nV9lChoBmgJaA9DCAa9N4YAJXJAlIaUUpRoFU0rAWgWR0Cu20Ifr8iwdX2UKGgGaAloD0MI9Bd6xOjXYUCUhpRSlGgVTegDaBZHQK7cVlsguAZ1fZQoaAZoCWgPQwh1OpD1VNJvQJSGlFKUaBVN/wFoFkdArt4cbm2b5XV9lChoBmgJaA9DCIW0xqCT/2NAlIaUUpRoFU3oA2gWR0Cu47Vj7Q9idX2UKGgGaAloD0MIwOeHEQLIckCUhpRSlGgVTQICaBZHQK7j8idrftR1fZQoaAZoCWgPQwiq7/yiBGRmQJSGlFKUaBVN6ANoFkdArxSqHIp6QnV9lChoBmgJaA9DCOnwEMaPeXBAlIaUUpRoFU23AmgWR0CvFU1iF0xNdX2UKGgGaAloD0MIQ8u6f6zdbUCUhpRSlGgVTSIDaBZHQK8YZCOWBz51fZQoaAZoCWgPQwjncK32sGJwQJSGlFKUaBVNxgFoFkdArxh/ARChOHV9lChoBmgJaA9DCCegibChe3JAlIaUUpRoFU0BAmgWR0CvGQtaQmu1dX2UKGgGaAloD0MIWqDdIUWgYECUhpRSlGgVTegDaBZHQK8ZXLQokRl1fZQoaAZoCWgPQwhfDVAa6qpvQJSGlFKUaBVNUAJoFkdArxloDJU5uXV9lChoBmgJaA9DCGYyHM/ndG5AlIaUUpRoFU0iA2gWR0CvGZPpyIYWdX2UKGgGaAloD0MIzVzg8lgiZECUhpRSlGgVTegDaBZHQK8au6GQCCB1fZQoaAZoCWgPQwhpOGVuvsBhQJSGlFKUaBVN6ANoFkdArxuqIWP91nV9lChoBmgJaA9DCPAw7Zt7e2RAlIaUUpRoFU3oA2gWR0CvHJiRwIdEdX2UKGgGaAloD0MIRbk0fiE0cECUhpRSlGgVTW4DaBZHQK8dDf51vEV1fZQoaAZoCWgPQwjMsieBzUdOQJSGlFKUaBVNCwFoFkdArx4lj3Ehq3V9lChoBmgJaA9DCC0GD9O+G1NAlIaUUpRoFU0VAWgWR0CvH2izkZJkdX2UKGgGaAloD0MITFEujZ+AcECUhpRSlGgVTRoBaBZHQK8gsf4h2W91fZQoaAZoCWgPQwiDaK1o8zNhQJSGlFKUaBVN6ANoFkdAryDxhWo3rHV9lChoBmgJaA9DCLpoyHjUInFAlIaUUpRoFU2RAWgWR0CvIRdWhh6TdX2UKGgGaAloD0MIdNTRcTUsbkCUhpRSlGgVTYoCaBZHQK8iFSAH3UR1fZQoaAZoCWgPQwjXL9gNW9VwQJSGlFKUaBVNbwJoFkdAryNEU9IPLHV9lChoBmgJaA9DCGNH41C/1W5AlIaUUpRoFU14AWgWR0CvJOwHiWE9dX2UKGgGaAloD0MIlzyelh/hZECUhpRSlGgVTegDaBZHQK8lbjRUm2N1fZQoaAZoCWgPQwh/iA0WDqFxQJSGlFKUaBVNMQNoFkdArycqwY+B6XV9lChoBmgJaA9DCIxMwK/RkXFAlIaUUpRoFU2vAmgWR0CvKDcqe9SNdX2UKGgGaAloD0MI226CbxpJaUCUhpRSlGgVTegDaBZHQK8qAYb83uN1fZQoaAZoCWgPQwgTK6ORjydzQJSGlFKUaBVNkQJoFkdAryoT4+KTCHV9lChoBmgJaA9DCMsuGFzzkWxAlIaUUpRoFU2LAWgWR0CvK071h9b5dX2UKGgGaAloD0MI7KNTVz5CcUCUhpRSlGgVTVgBaBZHQK8tZSiudPN1fZQoaAZoCWgPQwj4im695p5xQJSGlFKUaBVNtgNoFkdAry6IqiGnGnV9lChoBmgJaA9DCAmH3uLhT3BAlIaUUpRoFU3SAWgWR0CvLpjtgKF7dX2UKGgGaAloD0MIqOUHrrIjcECUhpRSlGgVTaUCaBZHQK8vOBeXzDp1fZQoaAZoCWgPQwhiaksd5LplQJSGlFKUaBVN6ANoFkdArzAON5t3wHV9lChoBmgJaA9DCAyuuaP/qnJAlIaUUpRoFU2YAWgWR0CvMk7ALy+YdX2UKGgGaAloD0MIF9NM9zpqZECUhpRSlGgVTegDaBZHQK8zm5wOvuB1fZQoaAZoCWgPQwiQ+BVruBZhQJSGlFKUaBVN6ANoFkdArzWEz2vjfnV9lChoBmgJaA9DCET8w5aecnBAlIaUUpRoFU3hAWgWR0CvNd/zBhx6dX2UKGgGaAloD0MItHIvMKtXbUCUhpRSlGgVTfkBaBZHQK82WwVTJhh1fZQoaAZoCWgPQwiKjuTyHwlyQJSGlFKUaBVNYwFoFkdArzcF0NjLCHV9lChoBmgJaA9DCM+idyqg03BAlIaUUpRoFU26AWgWR0CvOAKSowVTdX2UKGgGaAloD0MIRyBe1y8CZUCUhpRSlGgVTegDaBZHQK84P6vaDf51fZQoaAZoCWgPQwh8KTxoduFkQJSGlFKUaBVN6ANoFkdArzh/JYDDCXV9lChoBmgJaA9DCO9054nn2GRAlIaUUpRoFU3oA2gWR0CvOKLwF1SwdX2UKGgGaAloD0MIMV7zqs4KSkCUhpRSlGgVS9loFkdArzixWzWwvHV9lChoBmgJaA9DCIVbPpKSdnFAlIaUUpRoFU34AmgWR0CvOWDABT4tdX2UKGgGaAloD0MIKJoHsEi6cUCUhpRSlGgVTfUBaBZHQK86gz4UN8V1fZQoaAZoCWgPQwgNUYU/Q71wQJSGlFKUaBVNKwFoFkdArzvDlDF6zHV9lChoBmgJaA9DCMSXiSIkHGZAlIaUUpRoFU3oA2gWR0CvPMd2X9iudX2UKGgGaAloD0MIBaVo5d72bUCUhpRSlGgVTRoBaBZHQK88004zabp1fZQoaAZoCWgPQwhXIeUn1a5wQJSGlFKUaBVNdgJoFkdArz4bpC8e0XV9lChoBmgJaA9DCLWK/tDM53JAlIaUUpRoFU2dAWgWR0CvPzJaA4GVdX2UKGgGaAloD0MIxvmbUIjNb0CUhpRSlGgVTXwBaBZHQK9AHxpcoph1fZQoaAZoCWgPQwgRpiiXxj1PQJSGlFKUaBVL5mgWR0CvQRefRNRFdX2UKGgGaAloD0MIV5V9VwTqcECUhpRSlGgVTdEBaBZHQK9Cb6zmfXh1fZQoaAZoCWgPQwjZPXlYqDxoQJSGlFKUaBVN6ANoFkdAr0Jw1DSgG3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ll2-ppo-default/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1a60bc314d7531d64db903602d18ee80072786c2be93b56be731363acd8d8db
3
+ size 84893
ll2-ppo-default/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4ee26ea0c34566e667393a74173a76847be267ba26b2ba3558e368580c2002f
3
+ size 43201
ll2-ppo-default/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ll2-ppo-default/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52f9181fd568c64cf7cf043cbd1406792c4a51d168c02584db6f37334eaf754c
3
+ size 233372
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.6005103514896, "std_reward": 27.380924906244562, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T12:30:26.890253"}