Safetensors
llama
code
vananh0905 commited on
Commit
3ea5ee0
·
verified ·
1 Parent(s): 90cb72d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -80
README.md CHANGED
@@ -1,80 +1,85 @@
1
- ---
2
- license: mit
3
- ---
4
-
5
- <p align="center">
6
- <img src="./asset/XMAiNframe.png" width="560px" alt="logo">
7
- </p>
8
-
9
- <div align="center">
10
-
11
- # XMAiNframe: A Large Language Model for Mainframe Modernization
12
- </div>
13
-
14
- ## Introduction
15
-
16
- We are introducing **XMAiNframe**, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. XMAiNframe is built on top of DeepSeek-Coder 7B and is available with 7B and 10.5B parameters.
17
- Additionally, we present [MainframeBench](https://huggingface.co/datasets/Fsoft-AIC/MainframeBench), a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMAiNframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMAiNframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMAiNframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
18
-
19
-
20
- ## Model Versions
21
-
22
- We release XMAiNframe with 7B and 10.5B parameters, including base and instruct models, to the public. XMAiNframe 10.5B is expanded from DeepSeek-Coder 7B by the depth up-scaling method without introducing additional modules or dynamic expert selection methods.
23
-
24
- <div align="center">
25
-
26
- | **Model** | **Download** |
27
- | :-----------------------------: | :----------------------------------------------------------: |
28
- | XMAiNframe-base-7b | [🤗 HuggingFace](https://https://huggingface.co/Fsoft-AIC/XMAiNframe-base-7b/) |
29
- | XMAiNframe-instruct-7b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-7b) |
30
- | XMAiNframe-base-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-base-10.5b) |
31
- | XMAiNframe-instruct-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-10.5b) |
32
-
33
- </div>
34
-
35
-
36
- ## Quickstart
37
-
38
- Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
39
-
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModelForCausalLM
43
- tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
44
- model = AutoModelForCausalLM.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
45
- messages=[
46
- {'role':'system','content':"You are a helpful assistant"},
47
- {'role': 'user', 'content': 'What is the future of Mainframe?'}
48
- ]
49
- inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
50
-
51
- outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
52
- print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
53
- ```
54
-
55
- ## Additional Information
56
- ### Other Resources:
57
- - Github: https://github.com/FSoft-AI4Code/XMainframe
58
- - Paper: https://arxiv.org/html/2406.11927v1
59
-
60
-
61
- ### License
62
- [MIT License](LICENSE)
63
-
64
- ### Citation Information
65
- More details can be found in our [paper](https://github.com/FSoft-AI4Code/).
66
-
67
- If you're using XMAiNframe, please cite using this BibTeX:
68
- ```
69
- @article{,
70
- title={XMAiNframe: A Large Language Model for Mainframe Modernization},
71
- author={},
72
- journal={arXiv preprint },
73
- year={2024}
74
- }
75
- ```
76
-
77
- # Contact us
78
- If you have any questions, comments or suggestions, please do not hesitate to contact us.
79
- - Website: [fpt-aicenter](https://www.fpt-aicenter.com/ai-residency/)
80
- - Email: support.ailab@fpt.com
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - Fsoft-AIC/MainframeBench
5
+ library_name: allennlp
6
+ tags:
7
+ - code
8
+ ---
9
+
10
+ <p align="center">
11
+ <img src="./asset/XMAiNframe.png" width="560px" alt="logo">
12
+ </p>
13
+
14
+ <div align="center">
15
+
16
+ # XMAiNframe: A Large Language Model for Mainframe Modernization
17
+ </div>
18
+
19
+ ## Introduction
20
+
21
+ We are introducing **XMAiNframe**, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. XMAiNframe is built on top of DeepSeek-Coder 7B and is available with 7B and 10.5B parameters.
22
+ Additionally, we present [MainframeBench](https://huggingface.co/datasets/Fsoft-AIC/MainframeBench), a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMAiNframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMAiNframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMAiNframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
23
+
24
+
25
+ ## Model Versions
26
+
27
+ We release XMAiNframe with 7B and 10.5B parameters, including base and instruct models, to the public. XMAiNframe 10.5B is expanded from DeepSeek-Coder 7B by the depth up-scaling method without introducing additional modules or dynamic expert selection methods.
28
+
29
+ <div align="center">
30
+
31
+ | **Model** | **Download** |
32
+ | :-----------------------------: | :----------------------------------------------------------: |
33
+ | XMAiNframe-base-7b | [🤗 HuggingFace](https://https://huggingface.co/Fsoft-AIC/XMAiNframe-base-7b/) |
34
+ | XMAiNframe-instruct-7b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-7b) |
35
+ | XMAiNframe-base-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-base-10.5b) |
36
+ | XMAiNframe-instruct-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-10.5b) |
37
+
38
+ </div>
39
+
40
+
41
+ ## Quickstart
42
+
43
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
44
+
45
+
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModelForCausalLM
48
+ tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-10.5b")
49
+ model = AutoModelForCausalLM.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-10.5b")
50
+ messages=[
51
+ {'role':'system','content':"You are a helpful assistant"},
52
+ {'role': 'user', 'content': 'What is the future of Mainframe?'}
53
+ ]
54
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
55
+
56
+ outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
57
+ print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
58
+ ```
59
+
60
+ ## Additional Information
61
+ ### Other Resources:
62
+ - Github: https://github.com/FSoft-AI4Code/XMainframe
63
+ - Paper: https://arxiv.org/html/2406.11927v1
64
+
65
+
66
+ ### License
67
+ [MIT License](LICENSE)
68
+
69
+ ### Citation Information
70
+ More details can be found in our [paper](https://github.com/FSoft-AI4Code/).
71
+
72
+ If you're using XMAiNframe, please cite using this BibTeX:
73
+ ```
74
+ @article{,
75
+ title={XMAiNframe: A Large Language Model for Mainframe Modernization},
76
+ author={},
77
+ journal={arXiv preprint },
78
+ year={2024}
79
+ }
80
+ ```
81
+
82
+ # Contact us
83
+ If you have any questions, comments or suggestions, please do not hesitate to contact us.
84
+ - Website: [fpt-aicenter](https://www.fpt-aicenter.com/ai-residency/)
85
+ - Email: support.ailab@fpt.com