vananh0905
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,80 +1,83 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
4 |
-
|
5 |
-
<p align="center">
|
6 |
-
<img src="./asset/XMAiNframe.png" width="560px" alt="logo">
|
7 |
-
</p>
|
8 |
-
|
9 |
-
<div align="center">
|
10 |
-
|
11 |
-
# XMAiNframe: A Large Language Model for Mainframe Modernization
|
12 |
-
</div>
|
13 |
-
|
14 |
-
## Introduction
|
15 |
-
|
16 |
-
We are introducing **XMAiNframe**, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. XMAiNframe is built on top of DeepSeek-Coder 7B and is available with 7B and 10.5B parameters.
|
17 |
-
Additionally, we present [MainframeBench](https://huggingface.co/datasets/Fsoft-AIC/MainframeBench), a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMAiNframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMAiNframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMAiNframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
|
18 |
-
|
19 |
-
|
20 |
-
## Model Versions
|
21 |
-
|
22 |
-
We release XMAiNframe with 7B and 10.5B parameters, including base and instruct models, to the public. XMAiNframe 10.5B is expanded from DeepSeek-Coder 7B by the depth up-scaling method without introducing additional modules or dynamic expert selection methods.
|
23 |
-
|
24 |
-
<div align="center">
|
25 |
-
|
26 |
-
| **Model** | **Download** |
|
27 |
-
| :-----------------------------: | :----------------------------------------------------------: |
|
28 |
-
| XMAiNframe-base-7b | [🤗 HuggingFace](https://https://huggingface.co/Fsoft-AIC/XMAiNframe-base-7b/) |
|
29 |
-
| XMAiNframe-instruct-7b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-7b) |
|
30 |
-
| XMAiNframe-base-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-base-10.5b) |
|
31 |
-
| XMAiNframe-instruct-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-10.5b) |
|
32 |
-
|
33 |
-
</div>
|
34 |
-
|
35 |
-
|
36 |
-
## Quickstart
|
37 |
-
|
38 |
-
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
39 |
-
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
|
44 |
-
model = AutoModelForCausalLM.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
|
45 |
-
messages=[
|
46 |
-
{'role':'system','content':"You are a helpful assistant"},
|
47 |
-
{'role': 'user', 'content': 'What is the future of Mainframe?'}
|
48 |
-
]
|
49 |
-
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
50 |
-
|
51 |
-
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
52 |
-
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
53 |
-
```
|
54 |
-
|
55 |
-
## Additional Information
|
56 |
-
### Other Resources:
|
57 |
-
- Github: https://github.com/FSoft-AI4Code/XMainframe
|
58 |
-
- Paper: https://arxiv.org/html/2406.11927v1
|
59 |
-
|
60 |
-
|
61 |
-
### License
|
62 |
-
[MIT License](LICENSE)
|
63 |
-
|
64 |
-
### Citation Information
|
65 |
-
More details can be found in our [paper](https://github.com/FSoft-AI4Code/).
|
66 |
-
|
67 |
-
If you're using XMAiNframe, please cite using this BibTeX:
|
68 |
-
```
|
69 |
-
@
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
}
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
<p align="center">
|
6 |
+
<img src="./asset/XMAiNframe.png" width="560px" alt="logo">
|
7 |
+
</p>
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
|
11 |
+
# XMAiNframe: A Large Language Model for Mainframe Modernization
|
12 |
+
</div>
|
13 |
+
|
14 |
+
## Introduction
|
15 |
+
|
16 |
+
We are introducing **XMAiNframe**, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. XMAiNframe is built on top of DeepSeek-Coder 7B and is available with 7B and 10.5B parameters.
|
17 |
+
Additionally, we present [MainframeBench](https://huggingface.co/datasets/Fsoft-AIC/MainframeBench), a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMAiNframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMAiNframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMAiNframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
|
18 |
+
|
19 |
+
|
20 |
+
## Model Versions
|
21 |
+
|
22 |
+
We release XMAiNframe with 7B and 10.5B parameters, including base and instruct models, to the public. XMAiNframe 10.5B is expanded from DeepSeek-Coder 7B by the depth up-scaling method without introducing additional modules or dynamic expert selection methods.
|
23 |
+
|
24 |
+
<div align="center">
|
25 |
+
|
26 |
+
| **Model** | **Download** |
|
27 |
+
| :-----------------------------: | :----------------------------------------------------------: |
|
28 |
+
| XMAiNframe-base-7b | [🤗 HuggingFace](https://https://huggingface.co/Fsoft-AIC/XMAiNframe-base-7b/) |
|
29 |
+
| XMAiNframe-instruct-7b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-7b) |
|
30 |
+
| XMAiNframe-base-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-base-10.5b) |
|
31 |
+
| XMAiNframe-instruct-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-10.5b) |
|
32 |
+
|
33 |
+
</div>
|
34 |
+
|
35 |
+
|
36 |
+
## Quickstart
|
37 |
+
|
38 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
39 |
+
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
|
45 |
+
messages=[
|
46 |
+
{'role':'system','content':"You are a helpful assistant"},
|
47 |
+
{'role': 'user', 'content': 'What is the future of Mainframe?'}
|
48 |
+
]
|
49 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
50 |
+
|
51 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
52 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
53 |
+
```
|
54 |
+
|
55 |
+
## Additional Information
|
56 |
+
### Other Resources:
|
57 |
+
- Github: https://github.com/FSoft-AI4Code/XMainframe
|
58 |
+
- Paper: https://arxiv.org/html/2406.11927v1
|
59 |
+
|
60 |
+
|
61 |
+
### License
|
62 |
+
[MIT License](LICENSE)
|
63 |
+
|
64 |
+
### Citation Information
|
65 |
+
More details can be found in our [paper](https://github.com/FSoft-AI4Code/).
|
66 |
+
|
67 |
+
If you're using XMAiNframe, please cite using this BibTeX:
|
68 |
+
```
|
69 |
+
@misc{dau2024xmainframelargelanguagemodel,
|
70 |
+
title={XMainframe: A Large Language Model for Mainframe Modernization},
|
71 |
+
author={Anh T. V. Dau and Hieu Trung Dao and Anh Tuan Nguyen and Hieu Trung Tran and Phong X. Nguyen and Nghi D. Q. Bui},
|
72 |
+
year={2024},
|
73 |
+
eprint={2408.04660},
|
74 |
+
archivePrefix={arXiv},
|
75 |
+
primaryClass={cs.CL},
|
76 |
+
url={https://arxiv.org/abs/2408.04660},
|
77 |
+
}
|
78 |
+
```
|
79 |
+
|
80 |
+
# Contact us
|
81 |
+
If you have any questions, comments or suggestions, please do not hesitate to contact us.
|
82 |
+
- Website: [fpt-aicenter](https://www.fpt-aicenter.com/ai-residency/)
|
83 |
+
- Email: support.ailab@fpt.com
|