DavidNguyen commited on
Commit
614c29a
·
verified ·
1 Parent(s): 219bf08

Upload folder using huggingface_hub (#821)

Browse files

- 5e32629157d341d75b196dad4ca64ac39e28fc68d4a6ee5f5634b0c3dd16aa61 (13d8fd5fa2e789d7fff8d4e66df128f08daa9869)
- fcfdc8c8231043f0bf00dae5e0cbd73b8a08b98f2b3f5aac6bebb45004390ab5 (a7600758070d59dd930756a1d5d2629fea71ad98)
- 1224b9a68ca5fc2f32ac117e265405fbaba89f54039bcc17e8552ca6df103e5f (9e24805b5e3bda1bb0ece4e16fef0227abbda02f)
- de1b5e67dfafa8cfd2dcccac80916769b96c2546b53f3f867389ec98ef93d6ef (4bc1216eadd6d67f6fe117870fa66dedc356fab1)
- 87467a6d67d7f04dfa5729cd871fe29014d1ab0f84e98884c329d0868a0449fc (67d349d03bc374b226641275f6a470844c771f2d)

Files changed (48) hide show
  1. .gitattributes +5 -0
  2. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/added_tokens.json +13 -0
  3. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/config.json +203 -0
  4. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/generation_config.json +12 -0
  5. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/latest +1 -0
  6. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/ai2d.json +0 -0
  7. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/infovqa_val.json +3 -0
  8. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmbench_en_dev.json +3 -0
  9. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mme.json +0 -0
  10. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmerealworld_lite.json +3 -0
  11. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmmu_pro_standard.json +0 -0
  12. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmmu_val.json +0 -0
  13. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmstar.json +0 -0
  14. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank0_metric_eval_done.txt +1 -0
  15. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank1_metric_eval_done.txt +1 -0
  16. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank2_metric_eval_done.txt +1 -0
  17. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank3_metric_eval_done.txt +1 -0
  18. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/results.json +729 -0
  19. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/scienceqa_img.json +0 -0
  20. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/seedbench_2_plus.json +0 -0
  21. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/mmbench_en_dev_results.json +1 -0
  22. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/mmbench_en_dev_results.xlsx +3 -0
  23. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/textvqa_submission_2025-07-17-19-29-53.json +0 -0
  24. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/textvqa_val.json +3 -0
  25. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2030_llava...bench_llava_model_args_82420a/rank0_metric_eval_done.txt +1 -0
  26. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2030_llava...bench_llava_model_args_82420a/results/ocrbench_results.txt +18 -0
  27. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2031_llava...bench_llava_model_args_82420a/rank1_metric_eval_done.txt +1 -0
  28. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2031_llava...bench_llava_model_args_82420a/rank2_metric_eval_done.txt +1 -0
  29. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2031_llava...bench_llava_model_args_82420a/rank3_metric_eval_done.txt +1 -0
  30. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank0_metric_eval_done.txt +1 -0
  31. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank1_metric_eval_done.txt +1 -0
  32. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank2_metric_eval_done.txt +1 -0
  33. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank3_metric_eval_done.txt +1 -0
  34. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/results/ocrbench_results.txt +18 -0
  35. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model-00001-of-00003.safetensors +3 -0
  36. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model-00002-of-00003.safetensors +3 -0
  37. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model-00003-of-00003.safetensors +3 -0
  38. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model.safetensors.index.json +0 -0
  39. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_0.pth +3 -0
  40. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_1.pth +3 -0
  41. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_2.pth +3 -0
  42. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_3.pth +3 -0
  43. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/special_tokens_map.json +24 -0
  44. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/tokenizer.model +3 -0
  45. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/tokenizer_config.json +132 -0
  46. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/trainer_state.json +0 -0
  47. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/training_args.bin +3 -0
  48. sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/zero_to_fp32.py +604 -0
.gitattributes CHANGED
@@ -354,3 +354,8 @@ sft/665K36/Full_smoe_plus_plus/checkpoint-20791/trainer_state.json filter=lfs di
354
  sft/665K36/Full_smoe_sharev3_not_norm/checkpoint-20791/trainer_state.json filter=lfs diff=lfs merge=lfs -text
355
  sft/665K36/Full_smoe_sharev3/checkpoint-20791/trainer_state.json filter=lfs diff=lfs merge=lfs -text
356
  sft/665K36/revise_Full_smoe_sharev3/checkpoint-20791/trainer_state.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
354
  sft/665K36/Full_smoe_sharev3_not_norm/checkpoint-20791/trainer_state.json filter=lfs diff=lfs merge=lfs -text
355
  sft/665K36/Full_smoe_sharev3/checkpoint-20791/trainer_state.json filter=lfs diff=lfs merge=lfs -text
356
  sft/665K36/revise_Full_smoe_sharev3/checkpoint-20791/trainer_state.json filter=lfs diff=lfs merge=lfs -text
357
+ sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/infovqa_val.json filter=lfs diff=lfs merge=lfs -text
358
+ sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmbench_en_dev.json filter=lfs diff=lfs merge=lfs -text
359
+ sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmerealworld_lite.json filter=lfs diff=lfs merge=lfs -text
360
+ sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/mmbench_en_dev_results.xlsx filter=lfs diff=lfs merge=lfs -text
361
+ sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/textvqa_val.json filter=lfs diff=lfs merge=lfs -text
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/config.json ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/cm/archive/namnv78_new/revise_checkpoints/Xphi35-siglip224/pft",
3
+ "architectures": [
4
+ "LlavaPhiForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_phi3.Phi3Config",
10
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
11
+ },
12
+ "bal_comp_loss_coef": 0.01,
13
+ "balance_loss_coef": 0.01,
14
+ "bos_token_id": 1,
15
+ "clip_smoe": true,
16
+ "diversity_loss_coef": 0.01,
17
+ "dropout": false,
18
+ "e_loss_coef": 0.001,
19
+ "embd_pdrop": 0.0,
20
+ "entropy_advance_loss": false,
21
+ "eos_token_id": 32000,
22
+ "freeze_backbone": false,
23
+ "freeze_mm_mlp_adapter": false,
24
+ "hidden_act": "silu",
25
+ "hidden_size": 3072,
26
+ "hybrid": false,
27
+ "image_aspect_ratio": "pad",
28
+ "init_weight": true,
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 8192,
31
+ "is_cosine": false,
32
+ "is_norm_weight": false,
33
+ "local_rank": 0,
34
+ "loss1": "balanceloss",
35
+ "loss2": "zloss",
36
+ "luna": false,
37
+ "max_compete_in_iter": 3,
38
+ "max_position_embeddings": 131072,
39
+ "mlp_smoe": true,
40
+ "mm_hidden_size": 1152,
41
+ "mm_patch_merge_type": "flat",
42
+ "mm_projector_lr": null,
43
+ "mm_projector_type": "moe",
44
+ "mm_use_im_patch_token": false,
45
+ "mm_use_im_start_end": false,
46
+ "mm_vision_select_feature": "patch",
47
+ "mm_vision_select_layer": -2,
48
+ "mm_vision_tower": "google/siglip-so400m-patch14-224",
49
+ "model_name_or_path": "/cm/archive/namnv78_new/revise_checkpoints/Xphi35-siglip224/pft",
50
+ "model_type": "llava_phi",
51
+ "moe_name": "smoe_sharev3",
52
+ "moe_relu_l1_reg_coeff_multiplier": 1.2,
53
+ "mp_pixel_shuffle_factor": 1,
54
+ "norm_softmax": false,
55
+ "normalization": true,
56
+ "num_attention_heads": 32,
57
+ "num_experts": 6,
58
+ "num_hidden_layers": 32,
59
+ "num_key_value_heads": 32,
60
+ "num_layers": 3,
61
+ "num_selected": 3,
62
+ "number_of_previous_tokens": 2,
63
+ "original_max_position_embeddings": 4096,
64
+ "pad_token_id": 32000,
65
+ "pretrain_mm_mlp_adapter": "/cm/archive/namnv78_new/revise_checkpoints/Xphi35-siglip224/pft/mm_projector.bin",
66
+ "rate_compete": 0.2,
67
+ "rate_flip": 0.05,
68
+ "resid_pdrop": 0.0,
69
+ "rms_norm_eps": 1e-05,
70
+ "rope_scaling": {
71
+ "long_factor": [
72
+ 1.0800000429153442,
73
+ 1.1100000143051147,
74
+ 1.1399999856948853,
75
+ 1.340000033378601,
76
+ 1.5899999141693115,
77
+ 1.600000023841858,
78
+ 1.6200000047683716,
79
+ 2.620000123977661,
80
+ 3.2300000190734863,
81
+ 3.2300000190734863,
82
+ 4.789999961853027,
83
+ 7.400000095367432,
84
+ 7.700000286102295,
85
+ 9.09000015258789,
86
+ 12.199999809265137,
87
+ 17.670000076293945,
88
+ 24.46000099182129,
89
+ 28.57000160217285,
90
+ 30.420001983642578,
91
+ 30.840002059936523,
92
+ 32.590003967285156,
93
+ 32.93000411987305,
94
+ 42.320003509521484,
95
+ 44.96000289916992,
96
+ 50.340003967285156,
97
+ 50.45000457763672,
98
+ 57.55000305175781,
99
+ 57.93000411987305,
100
+ 58.21000289916992,
101
+ 60.1400032043457,
102
+ 62.61000442504883,
103
+ 62.62000274658203,
104
+ 62.71000289916992,
105
+ 63.1400032043457,
106
+ 63.1400032043457,
107
+ 63.77000427246094,
108
+ 63.93000411987305,
109
+ 63.96000289916992,
110
+ 63.970001220703125,
111
+ 64.02999877929688,
112
+ 64.06999969482422,
113
+ 64.08000183105469,
114
+ 64.12000274658203,
115
+ 64.41000366210938,
116
+ 64.4800033569336,
117
+ 64.51000213623047,
118
+ 64.52999877929688,
119
+ 64.83999633789062
120
+ ],
121
+ "short_factor": [
122
+ 1.0,
123
+ 1.0199999809265137,
124
+ 1.0299999713897705,
125
+ 1.0299999713897705,
126
+ 1.0499999523162842,
127
+ 1.0499999523162842,
128
+ 1.0499999523162842,
129
+ 1.0499999523162842,
130
+ 1.0499999523162842,
131
+ 1.0699999332427979,
132
+ 1.0999999046325684,
133
+ 1.1099998950958252,
134
+ 1.1599998474121094,
135
+ 1.1599998474121094,
136
+ 1.1699998378753662,
137
+ 1.2899998426437378,
138
+ 1.339999794960022,
139
+ 1.679999828338623,
140
+ 1.7899998426437378,
141
+ 1.8199998140335083,
142
+ 1.8499997854232788,
143
+ 1.8799997568130493,
144
+ 1.9099997282028198,
145
+ 1.9399996995925903,
146
+ 1.9899996519088745,
147
+ 2.0199997425079346,
148
+ 2.0199997425079346,
149
+ 2.0199997425079346,
150
+ 2.0199997425079346,
151
+ 2.0199997425079346,
152
+ 2.0199997425079346,
153
+ 2.0299997329711914,
154
+ 2.0299997329711914,
155
+ 2.0299997329711914,
156
+ 2.0299997329711914,
157
+ 2.0299997329711914,
158
+ 2.0299997329711914,
159
+ 2.0299997329711914,
160
+ 2.0299997329711914,
161
+ 2.0299997329711914,
162
+ 2.0799996852874756,
163
+ 2.0899996757507324,
164
+ 2.189999580383301,
165
+ 2.2199995517730713,
166
+ 2.5899994373321533,
167
+ 2.729999542236328,
168
+ 2.749999523162842,
169
+ 2.8399994373321533
170
+ ],
171
+ "type": "longrope"
172
+ },
173
+ "rope_theta": 10000.0,
174
+ "router_loss_coef": 0.01,
175
+ "router_theta": 0.1,
176
+ "router_z_loss_coef": 0.001,
177
+ "scales": [
178
+ 1,
179
+ 3
180
+ ],
181
+ "sliding_window": 262144,
182
+ "sparse_upcycling": true,
183
+ "std_gate": 0.02,
184
+ "strategy_train": "base",
185
+ "tie_word_embeddings": false,
186
+ "tokenizer_model_max_length": 2048,
187
+ "tokenizer_padding_side": "right",
188
+ "topk_max": 2,
189
+ "topk_min": 1,
190
+ "torch_dtype": "bfloat16",
191
+ "training": true,
192
+ "transformers_version": "4.43.0",
193
+ "tune_mm_mlp_adapter": false,
194
+ "unit_test": true,
195
+ "use_cache": false,
196
+ "use_mm_proj": true,
197
+ "use_old": false,
198
+ "version": "phi35",
199
+ "vision_tower": "google/siglip-so400m-patch14-224",
200
+ "vision_tower_dir": "/cm/archive/namnv78_new/revise_checkpoints/Xphi35-siglip224/pft/clip.bin",
201
+ "vocab_size": 32064,
202
+ "warm_up": 0.05
203
+ }
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 32007,
7
+ 32001,
8
+ 32000
9
+ ],
10
+ "pad_token_id": 32000,
11
+ "transformers_version": "4.43.0"
12
+ }
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step12477
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/ai2d.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/infovqa_val.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20481b3f09f9a284e75f4666e2dbcd3ba5edd37af17da5ffe3ce7daa956a795
3
+ size 576426958
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmbench_en_dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e2e0c174443a675dcdefe282bd72cdcc5fd7e614aa8bfc77aca9f81cf5f0f19
3
+ size 14568322
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mme.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmerealworld_lite.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02ff02798d3f02973ef781787110743f077761182c5110bc44c9cb38ec63698c
3
+ size 1994104355
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmmu_pro_standard.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmmu_val.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/mmstar.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank0_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 0 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank1_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 1 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank2_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 2 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/rank3_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 3 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/results.json ADDED
@@ -0,0 +1,729 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "ai2d": {
4
+ "exact_match,flexible-extract": 0.6544689119170984,
5
+ "exact_match_stderr,flexible-extract": 0.008558935628342142,
6
+ "alias": "ai2d"
7
+ },
8
+ "infovqa_val": {
9
+ "anls,none": 0.26847554444841126,
10
+ "anls_stderr,none": 0.008375057067642373,
11
+ "alias": "infovqa_val"
12
+ },
13
+ "mmbench_en_dev": {
14
+ "gpt_eval_score,none": 71.21993127147766,
15
+ "gpt_eval_score_stderr,none": "N/A",
16
+ "submission,none": null,
17
+ "submission_stderr,none": "N/A",
18
+ "alias": "mmbench_en_dev"
19
+ },
20
+ "mme": {
21
+ "mme_cognition_score,none": 321.7857142857143,
22
+ "mme_cognition_score_stderr,none": "N/A",
23
+ "mme_percetion_score,none": 1418.2278911564626,
24
+ "mme_percetion_score_stderr,none": "N/A",
25
+ "alias": "mme"
26
+ },
27
+ "mmerealworld_lite": {
28
+ "mme_realworld_score,none": 0.30484627410109433,
29
+ "mme_realworld_score_stderr,none": "N/A",
30
+ "alias": "mmerealworld_lite"
31
+ },
32
+ "mmmu_pro_standard": {
33
+ "mmmu_acc,none": 0.25896,
34
+ "mmmu_acc_stderr,none": "N/A",
35
+ "alias": "mmmu_pro_standard"
36
+ },
37
+ "mmmu_val": {
38
+ "mmmu_acc,none": 0.41222,
39
+ "mmmu_acc_stderr,none": "N/A",
40
+ "alias": "mmmu_val"
41
+ },
42
+ "mmstar": {
43
+ "coarse perception,none": 0.6918706627011363,
44
+ "coarse perception_stderr,none": "N/A",
45
+ "fine-grained perception,none": 0.3625644804716286,
46
+ "fine-grained perception_stderr,none": "N/A",
47
+ "instance reasoning,none": 0.5205089434882838,
48
+ "instance reasoning_stderr,none": "N/A",
49
+ "logical reasoning,none": 0.3660535284297661,
50
+ "logical reasoning_stderr,none": "N/A",
51
+ "math,none": 0.28080727078321305,
52
+ "math_stderr,none": "N/A",
53
+ "science & technology,none": 0.19842818316868963,
54
+ "science & technology_stderr,none": "N/A",
55
+ "alias": "mmstar"
56
+ },
57
+ "scienceqa_img": {
58
+ "exact_match,none": 0.7416955875061974,
59
+ "exact_match_stderr,none": 0.009748403485997436,
60
+ "alias": "scienceqa_img"
61
+ },
62
+ "seedbench_2_plus": {
63
+ "seedbench_2_plus_Chart,none": 0.5061728395061729,
64
+ "seedbench_2_plus_Chart_stderr,none": "N/A",
65
+ "seedbench_2_plus_all,none": 0.48967940272288096,
66
+ "seedbench_2_plus_all_stderr,none": "N/A",
67
+ "seedbench_2_plus_Web,none": 0.5075757575757576,
68
+ "seedbench_2_plus_Web_stderr,none": "N/A",
69
+ "seedbench_2_plus_Map,none": 0.45848822800495664,
70
+ "seedbench_2_plus_Map_stderr,none": "N/A",
71
+ "alias": "seedbench_2_plus"
72
+ },
73
+ "textvqa_val": {
74
+ "exact_match,none": 0.4134800003051758,
75
+ "exact_match_stderr,none": 0.006747678419171048,
76
+ "submission,none": null,
77
+ "submission_stderr,none": "N/A",
78
+ "alias": "textvqa_val"
79
+ }
80
+ },
81
+ "configs": {
82
+ "ai2d": {
83
+ "task": "ai2d",
84
+ "dataset_path": "lmms-lab/ai2d",
85
+ "dataset_kwargs": {
86
+ "token": true
87
+ },
88
+ "test_split": "test",
89
+ "doc_to_visual": "<function ai2d_doc_to_visual at 0x7f7862c37700>",
90
+ "doc_to_text": "<function ai2d_doc_to_text at 0x7f7862c379d0>",
91
+ "doc_to_target": "<function ai2d_doc_to_target at 0x7f7862c37f70>",
92
+ "description": "",
93
+ "target_delimiter": " ",
94
+ "fewshot_delimiter": "\n\n",
95
+ "metric_list": [
96
+ {
97
+ "metric": "exact_match",
98
+ "aggregation": "mean",
99
+ "higher_is_better": true,
100
+ "ignore_case": true,
101
+ "ignore_punctuation": true
102
+ }
103
+ ],
104
+ "output_type": "generate_until",
105
+ "generation_kwargs": {
106
+ "max_new_tokens": 512,
107
+ "temperature": 0.0,
108
+ "do_sample": false,
109
+ "until": [
110
+ "\n\n"
111
+ ]
112
+ },
113
+ "repeats": 1,
114
+ "filter_list": [
115
+ {
116
+ "name": "flexible-extract",
117
+ "filter": [
118
+ {
119
+ "function": "<class 'utils.MultiChoiceRegexFilter'>",
120
+ "group_select": 0,
121
+ "ignore_case": true,
122
+ "ignore_punctuation": true,
123
+ "regex_pattern": "([A-Z])\\."
124
+ }
125
+ ]
126
+ }
127
+ ],
128
+ "should_decontaminate": false,
129
+ "metadata": [
130
+ {
131
+ "version": 0.0
132
+ }
133
+ ],
134
+ "model_specific_prompt_kwargs": {
135
+ "default": {
136
+ "prompt_format": "mcq",
137
+ "pre_prompt": "",
138
+ "post_prompt": "\nAnswer with the option's letter from the given choices directly."
139
+ },
140
+ "gpt4v": {
141
+ "prompt_format": "mcq",
142
+ "pre_prompt": "",
143
+ "post_prompt": "\nAbove choices are given in {option}. {content} format.\nPlease answer with the option letter from the given choices directly."
144
+ },
145
+ "qwen_vl": {
146
+ "prompt_format": "qa",
147
+ "pre_prompt": "",
148
+ "post_prompt": " Answer:"
149
+ },
150
+ "xcomposer2_4khd": {
151
+ "prompt_format": "mcq_xcomposer",
152
+ "pre_prompt": "[UNUSED_TOKEN_146]user\nQuestion: ",
153
+ "post_prompt": "[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\nThe answer is"
154
+ }
155
+ },
156
+ "model_specific_target_kwargs": {
157
+ "default": "mcq",
158
+ "qwen_vl": "qa"
159
+ }
160
+ },
161
+ "infovqa_val": {
162
+ "task": "infovqa_val",
163
+ "dataset_path": "lmms-lab/DocVQA",
164
+ "dataset_name": "InfographicVQA",
165
+ "dataset_kwargs": {
166
+ "token": true
167
+ },
168
+ "test_split": "validation",
169
+ "doc_to_visual": "<function infovqa_doc_to_visual at 0x7f78950b2790>",
170
+ "doc_to_text": "<function infovqa_doc_to_text at 0x7f78950b2a60>",
171
+ "doc_to_target": "answers",
172
+ "description": "",
173
+ "target_delimiter": " ",
174
+ "fewshot_delimiter": "\n\n",
175
+ "metric_list": [
176
+ {
177
+ "metric": "anls",
178
+ "aggregation": "mean",
179
+ "higher_is_better": true
180
+ }
181
+ ],
182
+ "output_type": "generate_until",
183
+ "generation_kwargs": {
184
+ "max_new_tokens": 32,
185
+ "temperature": 0.0,
186
+ "do_sample": false,
187
+ "until": [
188
+ "\n\n"
189
+ ]
190
+ },
191
+ "repeats": 1,
192
+ "should_decontaminate": false,
193
+ "model_specific_prompt_kwargs": {
194
+ "default": {
195
+ "pre_prompt": "",
196
+ "post_prompt": "\nAnswer the question using a single word or phrase."
197
+ }
198
+ }
199
+ },
200
+ "mmbench_en_dev": {
201
+ "task": "mmbench_en_dev",
202
+ "dataset_path": "lmms-lab/MMBench",
203
+ "dataset_name": "en",
204
+ "dataset_kwargs": {
205
+ "token": true
206
+ },
207
+ "test_split": "dev",
208
+ "doc_to_visual": "<function mmbench_doc_to_visual at 0x7f78c1ed0430>",
209
+ "doc_to_text": "<function mmbench_doc_to_text at 0x7f78c1ed0940>",
210
+ "doc_to_target": "answer",
211
+ "process_results": "<function mmbench_process_results at 0x7f78c1ed0e50>",
212
+ "description": "",
213
+ "target_delimiter": " ",
214
+ "fewshot_delimiter": "\n\n",
215
+ "metric_list": [
216
+ {
217
+ "metric": "gpt_eval_score",
218
+ "aggregation": "<function mmbench_aggregate_dev_results_eval at 0x7f78c1ec5ca0>",
219
+ "higher_is_better": true
220
+ },
221
+ {
222
+ "metric": "submission",
223
+ "aggregation": "<function mmbench_aggregate_dev_results_submission at 0x7f78c1ed01f0>",
224
+ "higher_is_better": true
225
+ }
226
+ ],
227
+ "output_type": "generate_until",
228
+ "generation_kwargs": {
229
+ "until": [
230
+ "ASSISTANT:"
231
+ ],
232
+ "max_new_tokens": 1024,
233
+ "temperature": 0.0,
234
+ "top_p": 1.0,
235
+ "num_beams": 1,
236
+ "do_sample": false,
237
+ "image_aspect_ratio": "original"
238
+ },
239
+ "repeats": 1,
240
+ "should_decontaminate": false,
241
+ "model_specific_prompt_kwargs": {
242
+ "default": {
243
+ "pre_prompt": "",
244
+ "post_prompt": "\nAnswer with the option's letter from the given choices directly."
245
+ }
246
+ },
247
+ "model_specific_generation_kwargs": {
248
+ "llava": {
249
+ "image_aspect_ratio": "original"
250
+ }
251
+ }
252
+ },
253
+ "mme": {
254
+ "task": "mme",
255
+ "dataset_path": "lmms-lab/MME",
256
+ "dataset_kwargs": {
257
+ "token": false
258
+ },
259
+ "test_split": "test",
260
+ "doc_to_visual": "<function mme_doc_to_visual at 0x7f78c39a88b0>",
261
+ "doc_to_text": "<function mme_doc_to_text at 0x7f78c1f4f160>",
262
+ "doc_to_target": "answer",
263
+ "process_results": "<function mme_process_results at 0x7f78c1f4f700>",
264
+ "description": "",
265
+ "target_delimiter": " ",
266
+ "fewshot_delimiter": "\n\n",
267
+ "metric_list": [
268
+ {
269
+ "metric": "mme_percetion_score",
270
+ "aggregation": "<function mme_aggregate_results at 0x7f78c1f4fc10>",
271
+ "higher_is_better": true
272
+ },
273
+ {
274
+ "metric": "mme_cognition_score",
275
+ "aggregation": "<function mme_aggregate_results at 0x7f78c1f560d0>",
276
+ "higher_is_better": true
277
+ }
278
+ ],
279
+ "output_type": "generate_until",
280
+ "generation_kwargs": {
281
+ "max_new_tokens": 16,
282
+ "temperature": 0.0,
283
+ "top_p": 1.0,
284
+ "num_beams": 1,
285
+ "do_sample": false,
286
+ "until": [
287
+ "\n\n"
288
+ ]
289
+ },
290
+ "repeats": 1,
291
+ "should_decontaminate": false,
292
+ "metadata": [
293
+ {
294
+ "version": 0.0
295
+ }
296
+ ],
297
+ "model_specific_prompt_kwargs": {
298
+ "default": {
299
+ "pre_prompt": "",
300
+ "post_prompt": "\nAnswer the question using a single word or phrase."
301
+ },
302
+ "gpt4v": {
303
+ "pre_prompt": "",
304
+ "post_prompt": "\nAnswer the question with Yes or No."
305
+ },
306
+ "qwen_vl": {
307
+ "pre_prompt": "",
308
+ "post_prompt": " Answer:"
309
+ },
310
+ "otterhd": {
311
+ "pre_prompt": "",
312
+ "post_prompt": " Answer:"
313
+ },
314
+ "xcomposer2_4khd": {
315
+ "pre_prompt": "[UNUSED_TOKEN_146]user\n",
316
+ "post_prompt": " Answer this question briefly[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"
317
+ }
318
+ }
319
+ },
320
+ "mmerealworld_lite": {
321
+ "task": "mmerealworld_lite",
322
+ "dataset_path": "yifanzhang114/MME-RealWorld-lite-lmms-eval",
323
+ "dataset_kwargs": {
324
+ "token": true
325
+ },
326
+ "test_split": "train",
327
+ "doc_to_visual": "<function mme_realworld_doc_to_visual at 0x7f78633e08b0>",
328
+ "doc_to_text": "<function mme_realworld_doc_to_text at 0x7f78633e53a0>",
329
+ "doc_to_target": "answer",
330
+ "process_results": "<function mme_realworld_process_results at 0x7f78633e9040>",
331
+ "description": "",
332
+ "target_delimiter": " ",
333
+ "fewshot_delimiter": "\n\n",
334
+ "metric_list": [
335
+ {
336
+ "metric": "mme_realworld_score",
337
+ "aggregation": "<function mme_realworld_aggregate_results at 0x7f78633e9b80>",
338
+ "higher_is_better": true
339
+ }
340
+ ],
341
+ "output_type": "generate_until",
342
+ "generation_kwargs": {
343
+ "max_new_tokens": 16,
344
+ "temperature": 0.0,
345
+ "top_p": 1.0,
346
+ "num_beams": 1,
347
+ "do_sample": false,
348
+ "until": [
349
+ "\n\n"
350
+ ]
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": [
355
+ {
356
+ "version": 0.0
357
+ }
358
+ ],
359
+ "model_specific_prompt_kwargs": {
360
+ "default": {
361
+ "pre_prompt": "",
362
+ "post_prompt": "\nSelect the best answer to the above multiple-choice question based on the image. Respond with only the letter (A, B, C, D, or E) of the correct option."
363
+ },
364
+ "gpt4v": {
365
+ "pre_prompt": "",
366
+ "post_prompt": "\nSelect the best answer to the above multiple-choice question based on the image. Respond with only the letter (A, B, C, D, or E) of the correct option."
367
+ },
368
+ "xcomposer2_4khd": {
369
+ "pre_prompt": "[UNUSED_TOKEN_146]user\n",
370
+ "post_prompt": " Answer this question with A, B, C, or D.[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"
371
+ }
372
+ }
373
+ },
374
+ "mmmu_pro_standard": {
375
+ "task": "mmmu_pro_standard",
376
+ "dataset_path": "MMMU/MMMU_Pro",
377
+ "dataset_name": "standard (10 options)",
378
+ "test_split": "test",
379
+ "doc_to_visual": "<function mmmu_pro_doc_to_visual at 0x7f78c1e9d790>",
380
+ "doc_to_text": "<function mmmu_pro_doc_to_text at 0x7f78c1ea9550>",
381
+ "doc_to_target": "{{answer}}",
382
+ "process_results": "<function mmmu_pro_process_results at 0x7f78c1eae4c0>",
383
+ "description": "",
384
+ "target_delimiter": " ",
385
+ "fewshot_delimiter": "\n\n",
386
+ "metric_list": [
387
+ {
388
+ "metric": "mmmu_acc",
389
+ "aggregation": "<function mmmu_pro_aggregate_results at 0x7f78c1eb6430>",
390
+ "higher_is_better": true
391
+ }
392
+ ],
393
+ "output_type": "generate_until",
394
+ "generation_kwargs": {
395
+ "max_new_tokens": 256,
396
+ "until": [
397
+ "\n\n"
398
+ ]
399
+ },
400
+ "repeats": 1,
401
+ "should_decontaminate": false,
402
+ "metadata": {
403
+ "version": 0.0,
404
+ "interleaved_format": false
405
+ },
406
+ "model_specific_prompt_kwargs": {
407
+ "default": {
408
+ "pre_prompt": "",
409
+ "post_prompt": "Answer with the option letter from the given choices directly."
410
+ }
411
+ }
412
+ },
413
+ "mmmu_val": {
414
+ "task": "mmmu_val",
415
+ "dataset_path": "lmms-lab/MMMU",
416
+ "test_split": "validation",
417
+ "doc_to_visual": "<function mmmu_doc_to_visual at 0x7f7875483700>",
418
+ "doc_to_text": "<function mmmu_doc_to_text at 0x7f7875367430>",
419
+ "doc_to_target": "answer",
420
+ "process_results": "<function mmmu_process_results at 0x7f787534c310>",
421
+ "description": "",
422
+ "target_delimiter": " ",
423
+ "fewshot_delimiter": "\n\n",
424
+ "metric_list": [
425
+ {
426
+ "metric": "mmmu_acc",
427
+ "aggregation": "<function mmmu_aggregate_results at 0x7f7875267280>",
428
+ "higher_is_better": true
429
+ }
430
+ ],
431
+ "output_type": "generate_until",
432
+ "generation_kwargs": {
433
+ "max_new_tokens": 128,
434
+ "until": [
435
+ "\n\n"
436
+ ],
437
+ "image_aspect_ratio": "original"
438
+ },
439
+ "repeats": 1,
440
+ "should_decontaminate": false,
441
+ "metadata": [
442
+ {
443
+ "version": 0.0
444
+ }
445
+ ],
446
+ "model_specific_generation_kwargs": {
447
+ "llava": {
448
+ "image_aspect_ratio": "original"
449
+ }
450
+ }
451
+ },
452
+ "mmstar": {
453
+ "task": "mmstar",
454
+ "dataset_path": "Lin-Chen/MMStar",
455
+ "dataset_kwargs": {
456
+ "token": true
457
+ },
458
+ "test_split": "val",
459
+ "doc_to_visual": "<function mmstar_doc_to_visual at 0x7f7862b91d30>",
460
+ "doc_to_text": "<function mmstar_doc_to_text at 0x7f7862b991f0>",
461
+ "doc_to_target": "answer",
462
+ "process_results": "<function mmstar_process_results at 0x7f7862b99700>",
463
+ "description": "",
464
+ "target_delimiter": " ",
465
+ "fewshot_delimiter": "\n\n",
466
+ "metric_list": [
467
+ {
468
+ "metric": "coarse perception",
469
+ "aggregation": "<function mmstar_aggregate_results at 0x7f7862b99b80>",
470
+ "higher_is_better": true
471
+ },
472
+ {
473
+ "metric": "fine-grained perception",
474
+ "aggregation": "<function mmstar_aggregate_results at 0x7f7862b99f70>",
475
+ "higher_is_better": true
476
+ },
477
+ {
478
+ "metric": "instance reasoning",
479
+ "aggregation": "<function mmstar_aggregate_results at 0x7f7862b1f3a0>",
480
+ "higher_is_better": true
481
+ },
482
+ {
483
+ "metric": "logical reasoning",
484
+ "aggregation": "<function mmstar_aggregate_results at 0x7f7862b1f790>",
485
+ "higher_is_better": true
486
+ },
487
+ {
488
+ "metric": "science & technology",
489
+ "aggregation": "<function mmstar_aggregate_results at 0x7f7862b1fb80>",
490
+ "higher_is_better": true
491
+ },
492
+ {
493
+ "metric": "math",
494
+ "aggregation": "<function mmstar_aggregate_results at 0x7f7862b1ff70>",
495
+ "higher_is_better": true
496
+ }
497
+ ],
498
+ "output_type": "generate_until",
499
+ "generation_kwargs": {
500
+ "until": [
501
+ "\n\n"
502
+ ],
503
+ "do_sample": false
504
+ },
505
+ "repeats": 1,
506
+ "should_decontaminate": false,
507
+ "metadata": [
508
+ {
509
+ "version": 0.0
510
+ }
511
+ ],
512
+ "model_specific_prompt_kwargs": {
513
+ "default": {
514
+ "pre_prompt": "",
515
+ "post_prompt": "\nAnswer with the option's letter from the given choices directly"
516
+ }
517
+ }
518
+ },
519
+ "scienceqa_img": {
520
+ "task": "scienceqa_img",
521
+ "dataset_path": "lmms-lab/ScienceQA",
522
+ "dataset_name": "ScienceQA-IMG",
523
+ "dataset_kwargs": {
524
+ "token": true
525
+ },
526
+ "test_split": "test",
527
+ "doc_to_visual": "<function sqa_doc_to_visual at 0x7f788e521dc0>",
528
+ "doc_to_text": "<function sqa_doc_to_text at 0x7f788e4f2040>",
529
+ "doc_to_target": "<function sqa_doc_to_target at 0x7f788e4f2430>",
530
+ "process_results": "<function sqa_process_results at 0x7f788e4f2790>",
531
+ "description": "",
532
+ "target_delimiter": " ",
533
+ "fewshot_delimiter": "\n\n",
534
+ "metric_list": [
535
+ {
536
+ "metric": "exact_match",
537
+ "aggregation": "mean",
538
+ "higher_is_better": true,
539
+ "ignore_case": true,
540
+ "ignore_punctuation": true
541
+ }
542
+ ],
543
+ "output_type": "generate_until",
544
+ "generation_kwargs": {
545
+ "max_new_tokens": 16,
546
+ "temperature": 0.0,
547
+ "do_sample": false,
548
+ "until": [
549
+ "\n\n"
550
+ ],
551
+ "image_aspect_ratio": "original"
552
+ },
553
+ "repeats": 1,
554
+ "should_decontaminate": false,
555
+ "metadata": [
556
+ {
557
+ "version": 0.0
558
+ }
559
+ ],
560
+ "model_specific_prompt_kwargs": {
561
+ "default": {
562
+ "format": "default",
563
+ "pre_prompt": "",
564
+ "post_prompt": "\nAnswer with the option's letter from the given choices directly."
565
+ },
566
+ "qwen_vl": {
567
+ "format": "qwen_vl"
568
+ },
569
+ "idefics2": {
570
+ "format": "default",
571
+ "pre_prompt": "",
572
+ "post_prompt": "\nAnswer:"
573
+ }
574
+ },
575
+ "model_specific_generation_kwargs": {
576
+ "llava": {
577
+ "image_aspect_ratio": "original"
578
+ }
579
+ }
580
+ },
581
+ "seedbench_2_plus": {
582
+ "task": "seedbench_2_plus",
583
+ "dataset_path": "doolayer/SEED-Bench-2-Plus",
584
+ "dataset_kwargs": {
585
+ "token": true
586
+ },
587
+ "test_split": "test",
588
+ "doc_to_visual": "<function seed_doc_to_visual at 0x7f788a10b310>",
589
+ "doc_to_text": "<function seed_doc_to_text at 0x7f788a10b940>",
590
+ "doc_to_target": "answer",
591
+ "process_results": "<function seed_process_result at 0x7f788a10be50>",
592
+ "description": "",
593
+ "target_delimiter": " ",
594
+ "fewshot_delimiter": "\n\n",
595
+ "metric_list": [
596
+ {
597
+ "metric": "seedbench_2_plus_Chart",
598
+ "aggregation": "<function seed_aggregation_result at 0x7f787821c3a0>",
599
+ "higher_is_better": true
600
+ },
601
+ {
602
+ "metric": "seedbench_2_plus_Map",
603
+ "aggregation": "<function seed_aggregation_result at 0x7f787821c820>",
604
+ "higher_is_better": true
605
+ },
606
+ {
607
+ "metric": "seedbench_2_plus_Web",
608
+ "aggregation": "<function seed_aggregation_result at 0x7f787821cca0>",
609
+ "higher_is_better": true
610
+ },
611
+ {
612
+ "metric": "seedbench_2_plus_all",
613
+ "aggregation": "<function seed_aggregation_result at 0x7f787824b160>",
614
+ "higher_is_better": true
615
+ }
616
+ ],
617
+ "output_type": "generate_until",
618
+ "generation_kwargs": {
619
+ "until": [
620
+ "ASSISTANT:"
621
+ ],
622
+ "max_new_tokens": 16,
623
+ "image_aspect_ratio": "original"
624
+ },
625
+ "repeats": 1,
626
+ "should_decontaminate": false,
627
+ "metadata": [
628
+ {
629
+ "version": 0.0
630
+ }
631
+ ],
632
+ "model_specific_prompt_kwargs": {
633
+ "llava": {
634
+ "img_token": "<image>",
635
+ "post_prompt": "Answer with the option's letter from the given choices directly."
636
+ },
637
+ "gpt4V": {
638
+ "img_token": "<image>",
639
+ "post_prompt": "Answer with the option's letter from the given choices directly."
640
+ },
641
+ "default": {
642
+ "img_token": "<image>",
643
+ "post_prompt": "Answer with the option's letter from the given choices directly."
644
+ }
645
+ }
646
+ },
647
+ "textvqa_val": {
648
+ "task": "textvqa_val",
649
+ "dataset_path": "lmms-lab/textvqa",
650
+ "test_split": "validation",
651
+ "doc_to_visual": "<function textvqa_doc_to_visual at 0x7f788fa299d0>",
652
+ "doc_to_text": "<function textvqa_doc_to_text at 0x7f788fa29e50>",
653
+ "doc_to_target": "answer",
654
+ "process_results": "<function textvqa_process_results at 0x7f788f899160>",
655
+ "description": "",
656
+ "target_delimiter": " ",
657
+ "fewshot_delimiter": "\n\n",
658
+ "metric_list": [
659
+ {
660
+ "metric": "exact_match",
661
+ "aggregation": "mean",
662
+ "higher_is_better": true,
663
+ "ignore_case": true,
664
+ "ignore_punctuation": true
665
+ },
666
+ {
667
+ "metric": "submission",
668
+ "aggregation": "<function textvqa_aggregate_submissions at 0x7f788fa29790>",
669
+ "higher_is_better": true
670
+ }
671
+ ],
672
+ "output_type": "generate_until",
673
+ "generation_kwargs": {
674
+ "until": [
675
+ "ASSISTANT:"
676
+ ]
677
+ },
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "model_specific_prompt_kwargs": {
681
+ "default": {
682
+ "pre_prompt": "",
683
+ "post_prompt": "\nAnswer the question using a single word or phrase.",
684
+ "ocr": false
685
+ },
686
+ "qwen_vl": {
687
+ "pre_prompt": "",
688
+ "post_prompt": " Answer:"
689
+ }
690
+ }
691
+ }
692
+ },
693
+ "versions": {
694
+ "ai2d": "Yaml",
695
+ "infovqa_val": "Yaml",
696
+ "mmbench_en_dev": "Yaml",
697
+ "mme": "Yaml",
698
+ "mmerealworld_lite": "Yaml",
699
+ "mmmu_pro_standard": "Yaml",
700
+ "mmmu_val": "Yaml",
701
+ "mmstar": "Yaml",
702
+ "scienceqa_img": "Yaml",
703
+ "seedbench_2_plus": "Yaml",
704
+ "textvqa_val": "Yaml"
705
+ },
706
+ "n-shot": {
707
+ "ai2d": 0,
708
+ "infovqa_val": 0,
709
+ "mmbench_en_dev": 0,
710
+ "mme": 0,
711
+ "mmerealworld_lite": 0,
712
+ "mmmu_pro_standard": 0,
713
+ "mmmu_val": 0,
714
+ "mmstar": 0,
715
+ "scienceqa_img": 0,
716
+ "seedbench_2_plus": 0,
717
+ "textvqa_val": 0
718
+ },
719
+ "model_configs": {
720
+ "model": "llava",
721
+ "model_args": "pretrained=/cm/archive/namnv78_new/revise_checkpoints/Xphi35-siglip224/SMOE/665K36/revise_Full_smoe_sharev3/checkpoint-12477,conv_template=phi35",
722
+ "batch_size": "1",
723
+ "device": null,
724
+ "limit": null,
725
+ "bootstrap_iters": 100000,
726
+ "gen_kwargs": ""
727
+ },
728
+ "git_hash": "289c7fe5"
729
+ }
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/scienceqa_img.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/seedbench_2_plus.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/mmbench_en_dev_results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"overall_acc": 0.7121993127147767, "category_acc": {"action_recognition": 0.9074074074074074, "attribute_comparison": 0.7045454545454546, "attribute_recognition": 0.8513513513513513, "celebrity_recognition": 0.7676767676767676, "function_reasoning": 0.8607594936708861, "future_prediction": 0.55, "identity_reasoning": 0.9777777777777777, "image_emotion": 0.84, "image_quality": 0.4528301886792453, "image_scene": 0.9615384615384616, "image_style": 0.9245283018867925, "image_topic": 0.8611111111111112, "nature_relation": 0.5625, "object_localization": 0.49382716049382713, "ocr": 0.6923076923076923, "physical_property_reasoning": 0.6, "physical_relation": 0.4583333333333333, "social_relation": 0.813953488372093, "spatial_relationship": 0.26666666666666666, "structuralized_imagetext_understanding": 0.4230769230769231}, "l2_category_acc": {"attribute_reasoning": 0.7889447236180904, "coarse_perception": 0.831081081081081, "finegrained_perception (cross-instance)": 0.6433566433566433, "finegrained_perception (instance-level)": 0.7030716723549488, "logic_reasoning": 0.4661016949152542, "relation_reasoning": 0.6347826086956522}}
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/mmbench_en_dev_results.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eae64c51364e19fe9591076a3878e0882d544ae87b51040157b5428d3528835
3
+ size 865116
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/submissions/textvqa_submission_2025-07-17-19-29-53.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2000_llava...l_mme_llava_model_args_82420a/textvqa_val.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2784ee378d820efb47d9c9d42a268758638ebfa76232aff787fb54feb5998952
3
+ size 13138199
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2030_llava...bench_llava_model_args_82420a/rank0_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 0 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2030_llava...bench_llava_model_args_82420a/results/ocrbench_results.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################### OCRBench #############################
2
+ Text Recognition(Total 300): 181
3
+ ---------------- Details of Recognition Score ------------------
4
+ Regular Text Recognition(Total 50): 47
5
+ Irregular Text Recognition(Total 50): 41
6
+ Artistic Text Recognition(Total 50): 44
7
+ Handwriting Recognition(Total 50): 24
8
+ Digit String Recognition(Total 50): 11
9
+ Non-Semantic Text Recognition(Total 50): 14
10
+ ----------------------------------------------------------------
11
+ Scene Text-centric VQA(Total 200): 113
12
+ ----------------------------------------------------------------
13
+ Doc-oriented VQA(Total 200): 22
14
+ ----------------------------------------------------------------
15
+ Key Information Extraction(Total 200): 10
16
+ Handwritten Mathematical Expression Recognition(Total 100): 0
17
+ --------------------- Final Score ------------------------------
18
+ Final Score(Total 1000): 326
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2031_llava...bench_llava_model_args_82420a/rank1_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 1 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2031_llava...bench_llava_model_args_82420a/rank2_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 2 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2031_llava...bench_llava_model_args_82420a/rank3_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 3 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank0_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 0 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank1_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 1 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank2_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 2 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/rank3_metric_eval_done.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ rank 3 eval done
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/logs/0717_2043_llava...bench_llava_model_args_82420a/results/ocrbench_results.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################### OCRBench #############################
2
+ Text Recognition(Total 300): 181
3
+ ---------------- Details of Recognition Score ------------------
4
+ Regular Text Recognition(Total 50): 47
5
+ Irregular Text Recognition(Total 50): 41
6
+ Artistic Text Recognition(Total 50): 44
7
+ Handwriting Recognition(Total 50): 24
8
+ Digit String Recognition(Total 50): 11
9
+ Non-Semantic Text Recognition(Total 50): 14
10
+ ----------------------------------------------------------------
11
+ Scene Text-centric VQA(Total 200): 113
12
+ ----------------------------------------------------------------
13
+ Doc-oriented VQA(Total 200): 22
14
+ ----------------------------------------------------------------
15
+ Key Information Extraction(Total 200): 10
16
+ Handwritten Mathematical Expression Recognition(Total 100): 0
17
+ --------------------- Final Score ------------------------------
18
+ Final Score(Total 1000): 326
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8db5c6ed5491b5ec22e6eccff7225a949c80c1cc79bc9dfbe8702af2f3a2533
3
+ size 4972489328
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e619458c75e10d7c91ad5e9a27c0041a1aa61259a918acc62314576c7a95cd7
3
+ size 4999471536
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d9b77600a994861129494fd3463903dc60a10be3aba825a5a41093a3657215
3
+ size 1372749400
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481f12c1f1705e83379202305d3b907cd563cc3aafe0ec283c9168d9321a13df
3
+ size 14960
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d01e229976b4cf5c83e60be34032a89e55ae8077f02e65b8da32994dcd3f282
3
+ size 14960
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59b3164e649645c24f2940c5f8a5ba0eb761fb3ac48272dc909d6c44d53ca329
3
+ size 14960
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dad3267b63aa2645776ada843572cab9ca9de2a5f8efc777ffe42910dcc0a443
3
+ size 14960
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/tokenizer_config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|endoftext|>",
123
+ "legacy": false,
124
+ "model_max_length": 2048,
125
+ "pad_token": "<unk>",
126
+ "padding_side": "right",
127
+ "sp_model_kwargs": {},
128
+ "spaces_between_special_tokens": false,
129
+ "tokenizer_class": "LlamaTokenizer",
130
+ "unk_token": "<unk>",
131
+ "use_default_system_prompt": false
132
+ }
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ebeea2e349849e325b2fba983de8f2006bb6d8715513eb796f49d57ab2991f7
3
+ size 8056
sft/665K36/revise_Full_smoe_sharev3/checkpoint-12477/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)