Delete test.ipynb
Browse files- test.ipynb +0 -186
test.ipynb
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 2,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import os \n",
|
10 |
-
"from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification, DataCollatorWithPadding"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "code",
|
15 |
-
"execution_count": 3,
|
16 |
-
"metadata": {},
|
17 |
-
"outputs": [],
|
18 |
-
"source": [
|
19 |
-
"model_name_or_path = \"/datadrive/namlh31/codebridge/Codebert-docstring-inconsistency\"\n",
|
20 |
-
"config = AutoConfig.from_pretrained(\n",
|
21 |
-
" model_name_or_path,\n",
|
22 |
-
")\n",
|
23 |
-
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
24 |
-
" model_name_or_path\n",
|
25 |
-
")\n",
|
26 |
-
"model = AutoModelForSequenceClassification.from_pretrained(\n",
|
27 |
-
"model_name_or_path,\n",
|
28 |
-
"config=config,\n",
|
29 |
-
")"
|
30 |
-
]
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"cell_type": "code",
|
34 |
-
"execution_count": 5,
|
35 |
-
"metadata": {},
|
36 |
-
"outputs": [],
|
37 |
-
"source": [
|
38 |
-
"examples = {'code': \"function(str){\\r\\n var ret = new Array(str.length), len = str.length;\\r\\n while(len--) ret[len] = str.charCodeAt(len);\\r\\n return Uint8Array.from(ret);\\r\\n}\",\n",
|
39 |
-
" 'docstring': 'we do not need Buffer pollyfill for now'}"
|
40 |
-
]
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"cell_type": "code",
|
44 |
-
"execution_count": 17,
|
45 |
-
"metadata": {},
|
46 |
-
"outputs": [],
|
47 |
-
"source": [
|
48 |
-
"texts = (\n",
|
49 |
-
" (examples['docstring'], examples['code'])\n",
|
50 |
-
" )\n",
|
51 |
-
"result = tokenizer(*texts, padding=\"max_length\", max_length=512, truncation=True, return_tensors= 'pt')"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "code",
|
56 |
-
"execution_count": 10,
|
57 |
-
"metadata": {},
|
58 |
-
"outputs": [
|
59 |
-
{
|
60 |
-
"name": "stdout",
|
61 |
-
"output_type": "stream",
|
62 |
-
"text": [
|
63 |
-
"512\n"
|
64 |
-
]
|
65 |
-
}
|
66 |
-
],
|
67 |
-
"source": [
|
68 |
-
"tokenizer.decode(result['input_ids'])\n",
|
69 |
-
"print(len(result['input_ids']))"
|
70 |
-
]
|
71 |
-
},
|
72 |
-
{
|
73 |
-
"cell_type": "code",
|
74 |
-
"execution_count": 22,
|
75 |
-
"metadata": {},
|
76 |
-
"outputs": [],
|
77 |
-
"source": [
|
78 |
-
"input = \"\"\"we do not need Buffer pollyfill for now</s></s>function(str){\\r\\n var ret = new Array(str.length), len = str.length;\\r\\n while(len--) ret[len] = str.charCodeAt(len);\\r\\n return Uint8Array.from(ret);\\r\\n}\"\"\"\n",
|
79 |
-
"rs_2 = tokenizer(input, padding=\"max_length\", max_length=512, truncation=True, return_tensors= 'pt')"
|
80 |
-
]
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"cell_type": "code",
|
84 |
-
"execution_count": 23,
|
85 |
-
"metadata": {},
|
86 |
-
"outputs": [
|
87 |
-
{
|
88 |
-
"data": {
|
89 |
-
"text/plain": [
|
90 |
-
"SequenceClassifierOutput(loss=None, logits=tensor([[ 0.2598, -0.2636]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)"
|
91 |
-
]
|
92 |
-
},
|
93 |
-
"execution_count": 23,
|
94 |
-
"metadata": {},
|
95 |
-
"output_type": "execute_result"
|
96 |
-
}
|
97 |
-
],
|
98 |
-
"source": [
|
99 |
-
"model(**rs_2)"
|
100 |
-
]
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"cell_type": "code",
|
104 |
-
"execution_count": 24,
|
105 |
-
"metadata": {},
|
106 |
-
"outputs": [
|
107 |
-
{
|
108 |
-
"name": "stdout",
|
109 |
-
"output_type": "stream",
|
110 |
-
"text": [
|
111 |
-
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
112 |
-
"To disable this warning, you can either:\n",
|
113 |
-
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
114 |
-
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
115 |
-
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
116 |
-
"To disable this warning, you can either:\n",
|
117 |
-
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
118 |
-
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
119 |
-
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
120 |
-
"To disable this warning, you can either:\n",
|
121 |
-
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
122 |
-
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
123 |
-
]
|
124 |
-
}
|
125 |
-
],
|
126 |
-
"source": [
|
127 |
-
"from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline\n",
|
128 |
-
"import torch\n",
|
129 |
-
"device = 0 if torch.cuda.is_available() else -1\n",
|
130 |
-
"pipeline = pipeline(\"text-classification\", model=model, tokenizer=tokenizer, device=device)"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"cell_type": "code",
|
135 |
-
"execution_count": 28,
|
136 |
-
"metadata": {},
|
137 |
-
"outputs": [
|
138 |
-
{
|
139 |
-
"name": "stdout",
|
140 |
-
"output_type": "stream",
|
141 |
-
"text": [
|
142 |
-
"[{'label': 'Inconsistency', 'score': 0.5601343512535095}]\n"
|
143 |
-
]
|
144 |
-
}
|
145 |
-
],
|
146 |
-
"source": [
|
147 |
-
"inputs = \"\"\"we do not need Buffer pollyfill for now</s></s>function(str){\n",
|
148 |
-
" var ret = new Array(str.length), len = str.length;\n",
|
149 |
-
" while(len--) ret[len] = str.charCodeAt(len);\n",
|
150 |
-
" return Uint8Array.from(ret);\n",
|
151 |
-
"}\"\"\"\n",
|
152 |
-
"prediction = pipeline(inputs)\n",
|
153 |
-
"print(prediction)"
|
154 |
-
]
|
155 |
-
},
|
156 |
-
{
|
157 |
-
"cell_type": "code",
|
158 |
-
"execution_count": null,
|
159 |
-
"metadata": {},
|
160 |
-
"outputs": [],
|
161 |
-
"source": []
|
162 |
-
}
|
163 |
-
],
|
164 |
-
"metadata": {
|
165 |
-
"kernelspec": {
|
166 |
-
"display_name": "namlh31",
|
167 |
-
"language": "python",
|
168 |
-
"name": "python3"
|
169 |
-
},
|
170 |
-
"language_info": {
|
171 |
-
"codemirror_mode": {
|
172 |
-
"name": "ipython",
|
173 |
-
"version": 3
|
174 |
-
},
|
175 |
-
"file_extension": ".py",
|
176 |
-
"mimetype": "text/x-python",
|
177 |
-
"name": "python",
|
178 |
-
"nbconvert_exporter": "python",
|
179 |
-
"pygments_lexer": "ipython3",
|
180 |
-
"version": "3.11.2"
|
181 |
-
},
|
182 |
-
"orig_nbformat": 4
|
183 |
-
},
|
184 |
-
"nbformat": 4,
|
185 |
-
"nbformat_minor": 2
|
186 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|