FritzStack commited on
Commit
9605bfe
·
verified ·
1 Parent(s): 883b1e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -130
README.md CHANGED
@@ -60,18 +60,6 @@ widget:
60
 
61
  [Recoded Cell Factories](http://m.phys.org/news/2015-09-recoded-cells-factories-proteins.html)
62
  | [Reddit](https://www.reddit.com/r/EverythingScience/comments/3krux3/researchers_transform_recoded_cells_into/)'
63
- - I do not expect things to work out for me.
64
- - source_sentence: Do you feel sad or unhappy?
65
- sentences:
66
- - Me everyday im depressing
67
- - And now I feel very alone and useless.
68
- - Sucks that I'm not the only one because others are suffering, but it's nice to
69
- know I'm not alone.
70
- - source_sentence: Do you feel sad or unhappy?
71
- sentences:
72
- - I cried because I lost not only my money, but because I lost myself.
73
- - Im not exactly depressed, at least not all of the time.
74
- - does anyone feel like they cant be sad
75
  pipeline_tag: sentence-similarity
76
  library_name: sentence-transformers
77
  ---
@@ -126,9 +114,9 @@ from sentence_transformers import SentenceTransformer
126
  model = SentenceTransformer("FritzStack/mpnet_MH_embedding")
127
  # Run inference
128
  sentences = [
129
- 'Do you feel sad or unhappy?',
130
- 'Im not exactly depressed, at least not all of the time.',
131
- 'does anyone feel like they cant be sad',
132
  ]
133
  embeddings = model.encode(sentences)
134
  print(embeddings.shape)
@@ -137,9 +125,6 @@ print(embeddings.shape)
137
  # Get the similarity scores for the embeddings
138
  similarities = model.similarity(embeddings, embeddings)
139
  print(similarities)
140
- # tensor([[ 1.0000, 0.7532, -0.4572],
141
- # [ 0.7532, 1.0000, -0.0545],
142
- # [-0.4572, -0.0545, 1.0000]])
143
  ```
144
 
145
  <!--
@@ -182,28 +167,6 @@ You can finetune this model on your own dataset.
182
 
183
  ### Training Dataset
184
 
185
- #### Unnamed Dataset
186
-
187
- * Size: 4,615 training samples
188
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
189
- * Approximate statistics based on the first 1000 samples:
190
- | | anchor | positive | negative |
191
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
192
- | type | string | string | string |
193
- | details | <ul><li>min: 9 tokens</li><li>mean: 13.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.7 tokens</li><li>max: 169 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 42.11 tokens</li><li>max: 384 tokens</li></ul> |
194
- * Samples:
195
- | anchor | positive | negative |
196
- |:-----------------------------------------|:------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|
197
- | <code>Do you feel sad or unhappy?</code> | <code>I do not feel sad.</code> | <code>I've been suffering my whole life, and it's currently at its peak :(</code> |
198
- | <code>Do you feel sad or unhappy?</code> | <code>I feel sad much of the time.</code> | <code>Things will get better, just focus more in the positive rather than the negative</code> |
199
- | <code>Do you feel sad or unhappy?</code> | <code>I am sad all the time.</code> | <code>That's why I understand I'm terrible, because it's wrong I get annoyed by that, people should do what they want, but I just can't stand being alone.</code> |
200
- * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
201
- ```json
202
- {
203
- "distance_metric": "TripletDistanceMetric.COSINE",
204
- "triplet_margin": 0.5
205
- }
206
- ```
207
 
208
  ### Training Hyperparameters
209
  #### Non-Default Hyperparameters
@@ -338,96 +301,6 @@ You can finetune this model on your own dataset.
338
 
339
  </details>
340
 
341
- ### Training Logs
342
- | Epoch | Step | Training Loss |
343
- |:------:|:----:|:-------------:|
344
- | 0.0347 | 10 | 0.3032 |
345
- | 0.0693 | 20 | 0.2893 |
346
- | 0.1040 | 30 | 0.2275 |
347
- | 0.1386 | 40 | 0.1532 |
348
- | 0.1733 | 50 | 0.1947 |
349
- | 0.2080 | 60 | 0.1126 |
350
- | 0.2426 | 70 | 0.1047 |
351
- | 0.2773 | 80 | 0.1118 |
352
- | 0.3120 | 90 | 0.0839 |
353
- | 0.3466 | 100 | 0.1147 |
354
- | 0.3813 | 110 | 0.111 |
355
- | 0.4159 | 120 | 0.0754 |
356
- | 0.4506 | 130 | 0.0964 |
357
- | 0.4853 | 140 | 0.1269 |
358
- | 0.5199 | 150 | 0.0795 |
359
- | 0.5546 | 160 | 0.1042 |
360
- | 0.5893 | 170 | 0.0797 |
361
- | 0.6239 | 180 | 0.0685 |
362
- | 0.6586 | 190 | 0.0819 |
363
- | 0.6932 | 200 | 0.0802 |
364
- | 0.7279 | 210 | 0.0934 |
365
- | 0.7626 | 220 | 0.0865 |
366
- | 0.7972 | 230 | 0.0731 |
367
- | 0.8319 | 240 | 0.0486 |
368
- | 0.8666 | 250 | 0.075 |
369
- | 0.9012 | 260 | 0.0627 |
370
- | 0.9359 | 270 | 0.0844 |
371
- | 0.9705 | 280 | 0.0776 |
372
- | 1.0035 | 290 | 0.0707 |
373
- | 1.0381 | 300 | 0.0479 |
374
- | 1.0728 | 310 | 0.05 |
375
- | 1.1075 | 320 | 0.0317 |
376
- | 1.1421 | 330 | 0.0263 |
377
- | 1.1768 | 340 | 0.0321 |
378
- | 1.2114 | 350 | 0.0221 |
379
- | 1.2461 | 360 | 0.0337 |
380
- | 1.2808 | 370 | 0.0301 |
381
- | 1.3154 | 380 | 0.034 |
382
- | 1.3501 | 390 | 0.0379 |
383
- | 1.3847 | 400 | 0.0489 |
384
- | 1.4194 | 410 | 0.0303 |
385
- | 1.4541 | 420 | 0.0263 |
386
- | 1.4887 | 430 | 0.0342 |
387
- | 1.5234 | 440 | 0.0328 |
388
- | 1.5581 | 450 | 0.0431 |
389
- | 1.5927 | 460 | 0.0472 |
390
- | 1.6274 | 470 | 0.0353 |
391
- | 1.6620 | 480 | 0.0389 |
392
- | 1.6967 | 490 | 0.0216 |
393
- | 1.7314 | 500 | 0.0351 |
394
- | 1.7660 | 510 | 0.0386 |
395
- | 1.8007 | 520 | 0.039 |
396
- | 1.8354 | 530 | 0.0264 |
397
- | 1.8700 | 540 | 0.0295 |
398
- | 1.9047 | 550 | 0.0329 |
399
- | 1.9393 | 560 | 0.0487 |
400
- | 1.9740 | 570 | 0.0287 |
401
- | 2.0069 | 580 | 0.0306 |
402
- | 2.0416 | 590 | 0.0171 |
403
- | 2.0763 | 600 | 0.009 |
404
- | 2.1109 | 610 | 0.017 |
405
- | 2.1456 | 620 | 0.0252 |
406
- | 2.1802 | 630 | 0.0123 |
407
- | 2.2149 | 640 | 0.0144 |
408
- | 2.2496 | 650 | 0.0187 |
409
- | 2.2842 | 660 | 0.02 |
410
- | 2.3189 | 670 | 0.0065 |
411
- | 2.3536 | 680 | 0.0131 |
412
- | 2.3882 | 690 | 0.0138 |
413
- | 2.4229 | 700 | 0.0111 |
414
- | 2.4575 | 710 | 0.0108 |
415
- | 2.4922 | 720 | 0.0079 |
416
- | 2.5269 | 730 | 0.0062 |
417
- | 2.5615 | 740 | 0.0105 |
418
- | 2.5962 | 750 | 0.0095 |
419
- | 2.6308 | 760 | 0.0112 |
420
- | 2.6655 | 770 | 0.0052 |
421
- | 2.7002 | 780 | 0.0103 |
422
- | 2.7348 | 790 | 0.0108 |
423
- | 2.7695 | 800 | 0.0059 |
424
- | 2.8042 | 810 | 0.0099 |
425
- | 2.8388 | 820 | 0.0142 |
426
- | 2.8735 | 830 | 0.0112 |
427
- | 2.9081 | 840 | 0.0194 |
428
- | 2.9428 | 850 | 0.0128 |
429
- | 2.9775 | 860 | 0.0093 |
430
-
431
 
432
  ### Framework Versions
433
  - Python: 3.12.12
 
60
 
61
  [Recoded Cell Factories](http://m.phys.org/news/2015-09-recoded-cells-factories-proteins.html)
62
  | [Reddit](https://www.reddit.com/r/EverythingScience/comments/3krux3/researchers_transform_recoded_cells_into/)'
 
 
 
 
 
 
 
 
 
 
 
 
63
  pipeline_tag: sentence-similarity
64
  library_name: sentence-transformers
65
  ---
 
114
  model = SentenceTransformer("FritzStack/mpnet_MH_embedding")
115
  # Run inference
116
  sentences = [
117
+ '',
118
+ '',
119
+ '',
120
  ]
121
  embeddings = model.encode(sentences)
122
  print(embeddings.shape)
 
125
  # Get the similarity scores for the embeddings
126
  similarities = model.similarity(embeddings, embeddings)
127
  print(similarities)
 
 
 
128
  ```
129
 
130
  <!--
 
167
 
168
  ### Training Dataset
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
  ### Training Hyperparameters
172
  #### Non-Default Hyperparameters
 
301
 
302
  </details>
303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
 
305
  ### Framework Versions
306
  - Python: 3.12.12