{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7953c97f7010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7953c97f70a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7953c97f7130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7953c97f71c0>", "_build": "<function ActorCriticPolicy._build at 0x7953c97f7250>", "forward": "<function ActorCriticPolicy.forward at 0x7953c97f72e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7953c97f7370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7953c97f7400>", "_predict": "<function ActorCriticPolicy._predict at 0x7953c97f7490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7953c97f7520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7953c97f75b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7953c97f7640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7953c97efe40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689889973883703863, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1Q3b0Od/g93f94Pk9mt76d+S89e+ubPQAAAAAAAAAAWvJOvmp7ZD8IyUO9y4kRv8FSnb4eANM9AAAAAAAAAADt+R++7I2GP6uj+b1DxAu/wkOSvrp9YT0AAAAAAAAAABropj2qxpI+W98+vq0Qwr6EUKs7SJxJvAAAAAAAAAAAGmcPPRTMobodaHoy3MLyMGYevTqNN22zAACAPwAAgD/NoB68ANCyPrEhwD0/Nuu+fOn5PKL0qzwAAAAAAAAAAAY7Lb5bEmQ/z+0RvgNeBb++taW+MGIPPQAAAAAAAAAAzZRLvBQOk7rqhl0+EgmFviwtnz316lO/AAAAAAAAgD8AWak8cblTu6Z+MbseU448OFVlPAbEdL0AAIA/AACAP+ZKcr09K14/ah58PCJWD79FX9K9vlYAPgAAAAAAAAAATVXEPeTVoT9GoQ4/I+gZv+yUsj3qB7I+AAAAAAAAAACaOIc9GpnLPrOUNb4xwfC++3HmvLRnkL0AAAAAAAAAAGZXtDwImo0+heHpO2RPyr6sfhs96bu5vAAAAAAAAAAAjSWpPSBglj5Y11++1fGvvor5eryuNmg9AAAAAAAAAADNViI8Q75FvEL8qzwMw188ySGtvRvcOT0AAIA/AACAP5qfSryUZt87apjxvFZus75GX1W5Gf6WuQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQHwfdRBNWMAWyUS+iMAXSUR0ChLpGW2PT5dX2UKGgGR0Bx2uZfD1oQaAdL6mgIR0ChLqfo7muDdX2UKGgGR0BwprsolUqAaAdLyGgIR0ChLsrDQ7cPdX2UKGgGR0BxTbojfNzKaAdLy2gIR0ChLuOZ9d/sdX2UKGgGR0Bu3MZUDMePaAdL22gIR0ChL54FJQLvdX2UKGgGR0By2hs1sLv1aAdL4GgIR0ChL6FOO802dX2UKGgGR0BxkNNO/L1VaAdLwWgIR0ChL9i/GlyjdX2UKGgGR0BwAGLhrFfiaAdLwGgIR0ChL93CsOoYdX2UKGgGR0Bx3sm/nGKiaAdL52gIR0ChL+gJkXk6dX2UKGgGR0BwKAaIeo1laAdLxWgIR0ChMBhBqsU7dX2UKGgGR0BxqWP5pJwsaAdL2GgIR0ChMDzd1uBMdX2UKGgGR0BwwTe1rqMWaAdLxWgIR0ChMGeFDfFadX2UKGgGR0BzHbUgB91EaAdL0WgIR0ChMQmSyMUAdX2UKGgGR0B0DsC5mRNiaAdL1mgIR0ChMQcNx2jgdX2UKGgGR0ByY656MR6GaAdL5WgIR0ChMTQztTkydX2UKGgGR0BzJZGrjo6kaAdLzGgIR0ChMTKGL1mKdX2UKGgGR0BwrH/6wdKeaAdL32gIR0ChMTdMCcPOdX2UKGgGR0ByphPoFFDwaAdLz2gIR0ChMU/IjnmrdX2UKGgGR0ByOXshPj4paAdLzmgIR0ChMW3m/336dX2UKGgGR0BxHd/ustCiaAdL4WgIR0ChMcCSA6MjdX2UKGgGR0BwZQGC7K7qaAdLuWgIR0ChMe/MW43FdX2UKGgGR0BzZx92HLzPaAdLvWgIR0ChMkMQd0aIdX2UKGgGR0BzcSpYLb5/aAdL1GgIR0ChMkKneiztdX2UKGgGR0BwgIrsjVx0aAdL0GgIR0ChMm3kPtladX2UKGgGR0BygU79ycTbaAdL6GgIR0ChQFUl7dBTdX2UKGgGR0BxwlZlnRLLaAdL1WgIR0ChQFrehwl0dX2UKGgGR0BzgS8h9srNaAdLxmgIR0ChQHFo11nvdX2UKGgGR0ByPaiO/+KkaAdL82gIR0ChQNFDneSCdX2UKGgGR0By9qtFKCg9aAdLwWgIR0ChQOBppN9IdX2UKGgGR0BwcPQpnYg8aAdLxGgIR0ChQRDaGpMpdX2UKGgGR0BwoCce8wpOaAdL5WgIR0ChQVCt7rs0dX2UKGgGR0BvsKyrxRVIaAdL2WgIR0ChQVAi3XqadX2UKGgGR0ByXa8zyjHoaAdL2GgIR0ChQW2Q4jrzdX2UKGgGR0ByqTM1TBInaAdL7mgIR0ChQZet8uzydX2UKGgGR0BvzMFQl8gIaAdL3GgIR0ChQZ/L1VYIdX2UKGgGR0ByB/IgeRxMaAdLvmgIR0ChQcizC1qndX2UKGgGR0ByLpJ4B3iaaAdL82gIR0ChQjDxCpm3dX2UKGgGR0BwtFea8YhuaAdL2mgIR0ChQmuSOinHdX2UKGgGR0Bw+sNI9TxYaAdL5GgIR0ChQofKp1ifdX2UKGgGR0Bu+f/cWTHKaAdL32gIR0ChQqdFOO81dX2UKGgGR0BunIOJ+DvmaAdL2WgIR0ChQtkqtozvdX2UKGgGR0BwaOpNsWO7aAdL42gIR0ChQvq+JxecdX2UKGgGR0BxJeXt0FKTaAdL2mgIR0ChQvgQQL/kdX2UKGgGR0Bx/U2DQJHBaAdLw2gIR0ChQxOQIUrTdX2UKGgGR0B0ETmITGo8aAdLx2gIR0ChQysxoIv8dX2UKGgGR0BzvCLuQZGbaAdL42gIR0ChQ65ksjFAdX2UKGgGR0BwC5WluWKNaAdL12gIR0ChQ8miHqNZdX2UKGgGR0BxzU6cRUWEaAdL02gIR0ChQ9zFuNxVdX2UKGgGR0ByvsTviLl4aAdL7GgIR0ChRBIA4n4PdX2UKGgGR0ByRSSowVTKaAdL12gIR0ChRBXuuzQedX2UKGgGR0BuO21SflIVaAdL2mgIR0ChRCXbdrO8dX2UKGgGR0Bx5jU5MlC1aAdL62gIR0ChRH1rylN2dX2UKGgGR0BxoLjGT9sKaAdL52gIR0ChROKWcBludX2UKGgGR0BwK5iH6/IsaAdL1WgIR0ChROiBXjlxdX2UKGgGR0ByK6+ajN6gaAdL52gIR0ChRTfcWTHKdX2UKGgGR0BzI9Gc4HX3aAdL42gIR0ChRU0bcXWOdX2UKGgGR0BysHVtoBaLaAdL0WgIR0ChRWjBVMmGdX2UKGgGR0Byh6naWX1KaAdL2WgIR0ChRYLupjtpdX2UKGgGR0ByQREPUaybaAdL1mgIR0ChRZQ84giedX2UKGgGR0BzLXMPjGT+aAdL1WgIR0ChRa1Da4+bdX2UKGgGR0B0L5ByCFsYaAdNAgFoCEdAoUXYY77sOXV9lChoBkdAb9Py+Yc/+2gHS8NoCEdAoUX2fZmI03V9lChoBkdAcMbGDtgKGGgHS8ZoCEdAoUYVYjjaPHV9lChoBkdAcc3SQHRkVmgHS9NoCEdAoUZ5jJ+2E3V9lChoBkdAcDgaURnOB2gHS8xoCEdAoUZ5s41gpnV9lChoBkdAcfoDfWMCLmgHS+RoCEdAoUZ/mmtQsXV9lChoBkdAcuQZqVQhwGgHS+JoCEdAoUamKEWZZ3V9lChoBkdAccTNxlxwQ2gHS/RoCEdAoUdHIyTINnV9lChoBkdAbsHc2R7qp2gHS9doCEdAoUdRl8PWhHV9lChoBkdAcFZLHMlkY2gHS9hoCEdAoUdbe2uxKXV9lChoBkdAcNez/p+tsGgHS8ZoCEdAoUd7Eit7r3V9lChoBkdAbuIVXV9WqGgHS9poCEdAoUgdyaNMoXV9lChoBkdAcwwZkTYdyWgHS/FoCEdAoUgb9/BnBnV9lChoBkdAcYlK4QSSNmgHS+hoCEdAoUgdbiZOSHV9lChoBkdAc1SBeXzDoGgHS99oCEdAoUhFgc94eXV9lChoBkdAcBxfpljEvWgHS9NoCEdAoUhyURnOB3V9lChoBkdAbwNGCqZMMGgHS/xoCEdAoUh192HLzXV9lChoBkdAcZ5XNke6qmgHS8loCEdAoUh33ztkWnV9lChoBkdAcgZFfzBhyGgHS+1oCEdAoUidXtBv73V9lChoBkdAcgFHryDqW2gHS8toCEdAoUjZMlC1JHV9lChoBkdAb7nOs1baAWgHS8loCEdAoUj+96C17nV9lChoBkdAb8dDvVmSQ2gHS95oCEdAoUkMSwnpjnV9lChoBkdAck2GUfPom2gHS9toCEdAoUkJGpda+3V9lChoBkdAcOpUqx1PnGgHS9NoCEdAoUnOCf6Gg3V9lChoBkdAbqZ1tfoicGgHS9toCEdAoUnUhaC+UXV9lChoBkdAcAek/KQq7WgHS+toCEdAoUoPVCojwHV9lChoBkdAcRfsRg7YCmgHS+BoCEdAoUoUn5SFXnV9lChoBkdAcgW71qWTo2gHS8xoCEdAoUpzMxGlRHV9lChoBkdAb1oskpqh12gHS9ZoCEdAoUqTBInSfHV9lChoBkdAb5R9BKL88GgHS81oCEdAoUqhvrGBF3V9lChoBkdAceeNVBD5TWgHS8xoCEdAoUrOKwY+CHV9lChoBkdAcNG7ZFocrGgHS8NoCEdAoUrilxffGnV9lChoBkdAcYXGOdXkpGgHS/JoCEdAoUrwlt0mt3V9lChoBkdAbjsUN8VpK2gHS9poCEdAoUr+SntOVXV9lChoBkdAckQhIOH312gHS95oCEdAoUsMJBw++3V9lChoBkdAc0gLM9r432gHS9loCEdAoUtkPatcOnV9lChoBkdAcdkrLQokRmgHS9NoCEdAoUuJhOP/73V9lChoBkdAc3g4cm0E5mgHS9ZoCEdAoUuXWUbDM3V9lChoBkdAcCnFQEZBLWgHS9xoCEdAoUub1M/QjXV9lChoBkdAcE+p++dsi2gHS7VoCEdAoUv493bEgnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 757, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |