Fratius's picture
first_commit_to_hfh
4ea42f3 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78a5363eb5b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78a5363eb640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78a5363eb6d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78a5363eb760>", "_build": "<function ActorCriticPolicy._build at 0x78a5363eb7f0>", "forward": "<function ActorCriticPolicy.forward at 0x78a5363eb880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78a5363eb910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78a5363eb9a0>", "_predict": "<function ActorCriticPolicy._predict at 0x78a5363eba30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78a5363ebac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78a5363ebb50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78a5363ebbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78a536389d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722791723774683694, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABOW71Y6qc/SD1kvoqXi77OIMc8Hq6APQAAAAAAAAAAQ9Zzvlx9jj9OSTe/0SQQv5hBhb1uYV2+AAAAAAAAAADjTh+/JLy1PuB26L1J4xC/sVZmvgrISLwAAAAAAAAAAA73xb7xdmw8G5lOPlOzeL7E+S6/tt4gvwAAgD8AAAAAAGSBvdAzrj8yihe/gSyPvr37nT2Lw909AAAAAAAAAAAAwMU6zfezP3R6HD7z7V++ykPkulrHDb0AAAAAAAAAABqODz2BX7Y/NmpSPl+cBb4yFmW9hXulvQAAAAAAAAAA3d/GPp8GXj764aM9McNdv579ED9uFa09AAAAAAAAAACa6qo89haDP7pxQT1EgCC/rSuFPTIHEz4AAAAAAAAAACW/CD9C5VI+JbJwPz9rNb9jHpu+atBrPQAAAAAAAAAAgPjMvcWZqz9DRkC/P5Wqvk+T9TzoWcS9AAAAAAAAAADNQAw8fMW1P8MrcD2Mv7a9YeREvc1GvT0AAAAAAAAAAKgB8r7YHOW9oLmavkqNkL3J90a+IJ6rvgAAAAAAAAAA5p7CviemTD+ylhK/9FQov3/SI775tgW+AAAAAAAAAACNKtU9bAqaPx0v0z6W0xC/wP7evT5VfD0AAAAAAAAAAAYQZT66n1M/0kBFPiMWLL8+Q3Q+ptGgPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFCxuOCGvfWMAWyUS12MAXSUR0B2cXBciW3SdX2UKGgGR8A36cPOIInjaAdLi2gIR0B2cmTeO4oadX2UKGgGR8BOVb1ZkkKNaAdLfmgIR0B2c2MsH0K7dX2UKGgGR8ASHs5XEIgOaAdLUWgIR0B2dDesPrfMdX2UKGgGR8Blo2bLEDQraAdLi2gIR0B2dGG/N7jUdX2UKGgGR8BBo+xW1c+raAdLeGgIR0B2dXDuSfUXdX2UKGgGR8BOvPuPV/c4aAdLamgIR0B2dxpL26CldX2UKGgGR8AFW2mYSg5BaAdLbWgIR0B2d1AJLM9sdX2UKGgGR8BVFc1XNke7aAdLcmgIR0B2eQMb3oLYdX2UKGgGR8BoqCTQmeDnaAdLgWgIR0B2e/9zfaYedX2UKGgGR8AhgeuFHrhSaAdLnWgIR0B2fJmmLtNSdX2UKGgGR8AESIk7fYSQaAdLimgIR0B2fdSHdoFndX2UKGgGR8AwPm7rcCYDaAdLgGgIR0B2fbluFYdRdX2UKGgGR8BB0zxPO6d2aAdLWmgIR0B2gAJXyRSxdX2UKGgGR8BNwTR6Ww/xaAdLk2gIR0B2f+UY8+zMdX2UKGgGR8BBAkA5q/M4aAdLiGgIR0B2gjB7/n4gdX2UKGgGR8BchyrDIikgaAdLemgIR0B2giZ5Rjz7dX2UKGgGR8Axjc+JP69CaAdLb2gIR0B2g9H8TBZZdX2UKGgGR8BfM71/Ue+3aAdLhmgIR0B2hRUlzEJjdX2UKGgGR8BFJAKOT7l8aAdLfGgIR0B2hX9m6GxmdX2UKGgGR8BEhrxAjY7JaAdLhWgIR0B2h9Fd9lVcdX2UKGgGR8Ax7n1WbPQfaAdLe2gIR0B2iC8lHBk7dX2UKGgGR8BQx9u5z5oHaAdLgmgIR0B2iOptJnQIdX2UKGgGR8A9KehPCVKPaAdLgmgIR0B2iqwNb1RMdX2UKGgGR0Azcx3mmtQsaAdLaWgIR0B2i+P7vXsgdX2UKGgGR8BWMWOIZZSvaAdLemgIR0B2jICZF5OadX2UKGgGR7/iILG7z06HaAdLfmgIR0B2jcfzSThYdX2UKGgGR8A3PuPV/c33aAdLfmgIR0B2jy0D2alUdX2UKGgGR8BQCNtMwlByaAdLYGgIR0B2j4vHtF8YdX2UKGgGR8A2YiPhhpg1aAdLWGgIR0B2kDVrhzeXdX2UKGgGR7/+zp9qk/KRaAdLe2gIR0B2kRyS3b22dX2UKGgGR8BTA6a9bor4aAdLXmgIR0B2ko0hvBJqdX2UKGgGR8BQScfigkC4aAdLhmgIR0B2kvPNVzZIdX2UKGgGR8BAT/DtPYWdaAdLTmgIR0B2kzIbOu7pdX2UKGgGR8BFGqXOW0JGaAdLa2gIR0B2lM3CKrJbdX2UKGgGR8BJE7sv7FbWaAdLVmgIR0B2lKlenhsJdX2UKGgGR0A7I5/smfGuaAdLkGgIR0B2ls9ZA6dUdX2UKGgGR8A3trvsqrimaAdLY2gIR0B2mZuHerMldX2UKGgGR8BICCD/VAiWaAdLgWgIR0B2nChRIjGDdX2UKGgGR8BQyx9Cu2ZzaAdLU2gIR0B2nEcCHRCydX2UKGgGR8AwJDZ13dKvaAdLaGgIR0B2naXVsk6cdX2UKGgGR8A1lExqO939aAdLfmgIR0B2nysny/bkdX2UKGgGR8A9UNutOmBOaAdLa2gIR0B2oMz2vjffdX2UKGgGR8A+inJ1aGHpaAdLjmgIR0B2ooVIqbz9dX2UKGgGR8A/tcNpdrwfaAdLgGgIR0B2owxsVLzxdX2UKGgGR8BAPfsNUfgaaAdLf2gIR0B2pN+F10T2dX2UKGgGR8BVSVC9h7VsaAdLcmgIR0B2pQRaouPFdX2UKGgGR8BOEkka/ATJaAdLeWgIR0B2pWnIhhYvdX2UKGgGR8BIgmqgh8pkaAdLUWgIR0B2pqnbZezEdX2UKGgGR8BIzr9deIEbaAdLdWgIR0B2p4IkZ75VdX2UKGgGR8BSGQljVhCuaAdLamgIR0B2p8+A3DNydX2UKGgGR8BdvJRCQcPwaAdLkWgIR0B2qfXEqDsddX2UKGgGR8A4iJFb3XZoaAdLkWgIR0B2q9+w1R+CdX2UKGgGR0A2g9OymhugaAdLWGgIR0B2rBn5BTn8dX2UKGgGR8BB1+xwAEMcaAdLamgIR0B2rP7BO58SdX2UKGgGR8A/efv4M4LkaAdLbmgIR0B2rWPZIxxldX2UKGgGR8A/LL4N7SiNaAdLV2gIR0B2sSpOvdM1dX2UKGgGR8AlG1jRUm2LaAdLfmgIR0B2sZQLux8ldX2UKGgGR0AtSckt29teaAdLYmgIR0B2tFA9mpVCdX2UKGgGR8AyXFtbcGkfaAdLbmgIR0B2tE+OfdyldX2UKGgGR8A6QfkWAPNFaAdLh2gIR0B2tbLHMlkZdX2UKGgGR8A5NOJtSAH3aAdLaWgIR0B2uJapxWDIdX2UKGgGR8Alt2OAAhjfaAdLo2gIR0B2uMp+c6NmdX2UKGgGR8AsPme18b71aAdLe2gIR0B2uWODJ2dNdX2UKGgGR8BjPrINmUW3aAdLmWgIR0B2uWUY8+zMdX2UKGgGR8Bbx7or4FibaAdLaGgIR0B2ucfgaWHDdX2UKGgGR8AXp4zJp35faAdLi2gIR0B2ubmDDjzadX2UKGgGR0AsYBNEgGKRaAdLuGgIR0B2uhTCLuQZdX2UKGgGR0AzQ71qWTouaAdLlmgIR0B2umJ0nw5OdX2UKGgGR8A1TiWE9MbnaAdLUmgIR0B2u3bypaRqdX2UKGgGR8BTV8z/IbOvaAdLd2gIR0B2vAfkmx+sdX2UKGgGR8BSd9liBoVVaAdLl2gIR0B2vkj6eoUBdX2UKGgGR8AoFE9+w1R+aAdLV2gIR0B2wC6y0KJEdX2UKGgGR8AQ6MXJo0yhaAdLfmgIR0B2w93+uNgjdX2UKGgGR0A3iFJQLux9aAdLmWgIR0B2xHqUu+RHdX2UKGgGR8BHVPPLPldUaAdLX2gIR0B2xQ/xDst1dX2UKGgGR0AjNwYtQKrraAdLW2gIR0B2xOVSn+AFdX2UKGgGR8A9IQDV6NVBaAdLVmgIR0B2xhsk6cRUdX2UKGgGR8BBVyU1Q66raAdLlmgIR0B2xxdeIEbHdX2UKGgGR8A7cpm29crzaAdLd2gIR0B2x2wOe8PGdX2UKGgGR8Ania/h2nsLaAdLbmgIR0B2x/Rb8m8edX2UKGgGR8AeJTER8MNMaAdLeGgIR0B2yFmWdEsrdX2UKGgGR8AzxxHXmNipaAdLUGgIR0B2yI4p+c6OdX2UKGgGR8AkqgJTl1bJaAdLdmgIR0B2yIFxGUfQdX2UKGgGR0Aud9/jKgZkaAdN6ANoCEdAdsjFOO8013V9lChoBkfAWtZzgdfb9WgHS3doCEdAdsjUvf0mMXV9lChoBkfAOgp/XoTwlWgHS1poCEdAdsqdqtYCAHV9lChoBkfAYiy5WBBiTmgHS5toCEdAdsrxHXmNi3V9lChoBkfAbZTv+fh/AmgHS4RoCEdAdss13t8eCHV9lChoBkfAP2RB/qgRLGgHS1ZoCEdAdszx8D0UXnV9lChoBkfAUIOcBltj1GgHS2JoCEdAds2kRBeHBXV9lChoBkfAM3dJjDsMRmgHS3poCEdAdtAEH+qBE3V9lChoBkc/0dAgPmPo3mgHS4VoCEdAdtAlgc94eXV9lChoBkfAOaZNoJzDGmgHS3poCEdAdtCZfUnXunV9lChoBkdALJOJcgQpWmgHS3ZoCEdAdtEIVdonKHV9lChoBkfAJ3Bv73wkPmgHS29oCEdAdtDr56+nInV9lChoBkfAT0SW9lEqlWgHS2loCEdAdtETXrdFfHV9lChoBkfASa4gLZzxPWgHS3RoCEdAdtGHLidauHV9lChoBkfALoEYwZflZGgHS3VoCEdAdtHKjzqbB3V9lChoBkfAMyHU2DQJHGgHS19oCEdAdtKFB6a9b3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 36, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}