FrancoisDongier
commited on
Commit
·
d75d70f
1
Parent(s):
bd4e9cf
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1982.05 +/- 31.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9b32dfcc46cf22000079f71c443fa66a6989a827758048ac144d6817f968046
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc32793ae50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc32793aee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc32793af70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc32793f040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc32793f0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc32793f160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc32793f1f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc32793f280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc32793f310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc32793f3a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc32793f430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc32793f4c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fc3279393c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677516677925626680,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD/Nmz8IaSi/wS2LvXxO1T/+DOi/KTqZPzh9Ir/UNmu/2zGQP+eMdj/ofhs/Q1pXv4FJmr7yZfK+y4PFPnv6Bz2uJQu/64mQv1vqXL/Xb5g+lIqYP9yDGr5zR+69z+uBv08hGz+yDpY+EEofP/oPUb9NnwS9jUMjv55FMr3PGL8/8K5Mv072nj/w4zk9kCsNv0zUW7/Bb+Q/mepOP2YwJT+RtMK/uM4dQG61xj4vhqs8ZjCyP3yywLtHXu++PWx7vlsWsD9kL3Y+nNjbPmFCt79PIRs/sg6WPhBKHz/6D1G/t1d/P7tzTr/55oi+3jClPoh10b+Sd+m/AT63vgtQpT5Kn8U+l77hv6eWrr7qppW/2cvcv30X+r+b+Ru/uI0Pv9Fmnb/hSNk+a5xxv9FkZj8Azwg/RUoov7dKAL8TQVY/qDrTv7IOlj4QSh8/+g9Rvzvwpz9BLTa/8WYLvq/5eD/71Ky/z9c1v3YVcL+BcJS+87+AP7JkfL+QtSS+PTMRvpDqmL+iWVi/h07FPVANlr/JFLa/r5ldPqVjkr9mT6C+CVtyPxCasr50rTa/nSAtPk8hGz+yDpY+EEofP/oPUb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACWxfu1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9/s1vQAAAAD4wvK/AAAAALJQOD0AAAAAUgjbPwAAAAC37PK9AAAAADU+5T8AAAAAJeI/PQAAAAAa4QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULELNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB8n870AAAAAO3P/vwAAAABw5cQ9AAAAADqC6D8AAAAAyGoQPgAAAADpzgBAAAAAADItELsAAAAA3z/jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZBWrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIChqqw8AAAAAOFy9r8AAAAA58O7vQAAAACAzPw/AAAAAGSZgz0AAAAA1N/mPwAAAADrTbo9AAAAABdZ978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACI7ZY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYJQ5PQAAAACHi+y/AAAAAFOSur0AAAAAmCXxPwAAAACjJbk9AAAAAM95AEAAAAAAMUV3vQAAAACOSO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJow86r/82uMAWyUTegDjAF0lEdAqsqMcOskp3V9lChoBkdAnpu48hcJMWgHTegDaAhHQKrLv5MURFt1fZQoaAZHQJ0aWeqaPS5oB03oA2gIR0Cqz07kGRmsdX2UKGgGR0CfIq5aNdZ8aAdN6ANoCEdAqtNLyauwHXV9lChoBkdAnSNHt4RmLGgHTegDaAhHQKrbY6QNkOJ1fZQoaAZHQJ0JPDtPYWdoB03oA2gIR0Cq3AS3b212dX2UKGgGR0CeCAdfb9IgaAdN6ANoCEdAqt3mSMcZL3V9lChoBkdAnnZSVSn+AGgHTegDaAhHQKrgYXZ5AyF1fZQoaAZHQJ09whOgxrVoB03oA2gIR0Cq6b/rSmZWdX2UKGgGR0CecRAmzBykaAdN6ANoCEdAquqy0dBBzHV9lChoBkdAneosYl6Z6WgHTegDaAhHQKrtan7YTTR1fZQoaAZHQJ09eNuLrHFoB03oA2gIR0Cq7+37cfvGdX2UKGgGR0CfJmZEDyOJaAdN6ANoCEdAqvdmbgCOm3V9lChoBkdAnO62LcbiqGgHTegDaAhHQKr3/59E1EV1fZQoaAZHQJ4Qe+sYEW9oB03oA2gIR0Cq+esUZeiSdX2UKGgGR0CcpMmLtNSJaAdN6ANoCEdAqvx2pMpPRHV9lChoBkdAmZhJNKyv92gHTegDaAhHQKsFJTrmhdt1fZQoaAZHQJwyLeDWbw1oB03oA2gIR0CrBhX8wYcedX2UKGgGR0CdAIE7GNrCaAdN6ANoCEdAqwkIXbdrPHV9lChoBkdAnARBXnyNGWgHTegDaAhHQKsLx8Kohpx1fZQoaAZHQKAP4BJ7LMdoB03oA2gIR0CrEwmXHBDYdX2UKGgGR0Cf0yU+9rXUaAdN6ANoCEdAqxOfRqoIfXV9lChoBkdAnU6dcjZ+QWgHTegDaAhHQKsVfd5Y5kt1fZQoaAZHQJ8Wx76YVqNoB03oA2gIR0CrGANTkyULdX2UKGgGR0Cfe47bL2YfaAdN6ANoCEdAqyAwH7gsLHV9lChoBkdAnwneOS4e92gHTegDaAhHQKshEvPkaMt1fZQoaAZHQJ7P5AxBVuJoB03oA2gIR0CrI/qagElmdX2UKGgGR0CgenCu+yquaAdN6ANoCEdAqydy1Vo6CHV9lChoBkdAoF7kstkFwGgHTegDaAhHQKsuugsbvPV1fZQoaAZHQKAFsn6VMVVoB03oA2gIR0CrL1Fu3trsdX2UKGgGR0Cgr6Mj/uLKaAdN6ANoCEdAqzEpKQJXyXV9lChoBkdAn+H7xZuAJGgHTegDaAhHQKszosDGLk11fZQoaAZHQJ8Ha925hBtoB03oA2gIR0CrOus+NcW1dX2UKGgGR0Cgc52WIGhVaAdN6ANoCEdAqzvLB68g6nV9lChoBkdAoB7sRtgrpmgHTegDaAhHQKs+kMQ2/BZ1fZQoaAZHQJad9aaCtihoB03oA2gIR0CrQoyfUWl/dX2UKGgGR0CgUpsOXmeUaAdN6ANoCEdAq0pZR64Ue3V9lChoBkdAoFxjj5sTFmgHTegDaAhHQKtK88tf5UN1fZQoaAZHQJ/f8yJsO5JoB03oA2gIR0CrTNzj/+85dX2UKGgGR0CepW81XNkfaAdN6ANoCEdAq09lWp6yB3V9lChoBkdAmoS6pLmITGgHTegDaAhHQKtW440dilV1fZQoaAZHQJsPMzwc5sFoB03oA2gIR0CrV3287IT5dX2UKGgGR0CauoctGus+aAdN6ANoCEdAq1oiLMs6JnV9lChoBkdAmSv+KoAGS2gHTegDaAhHQKteEQQL/jt1fZQoaAZHQJnqC1YyO7xoB03oA2gIR0CrZp+FcpsodX2UKGgGR0CaSkLsa86FaAdN6ANoCEdAq2dE7ZFoc3V9lChoBkdAguWQ8fV7QmgHTegDaAhHQKtpTWtlqah1fZQoaAZHQHnyar7wazhoB03oA2gIR0CrbA2SMcZMdX2UKGgGR0CZITOIInjRaAdN6ANoCEdAq3OQnc+JQHV9lChoBkdAlZQH+IdlumgHTegDaAhHQKt0MMrEtNB1fZQoaAZHQJJzSP3i705oB03oA2gIR0CrdrjujRD1dX2UKGgGR0CU4hJsO5J9aAdN6ANoCEdAq3qOp2ll9XV9lChoBkdAlWFkPczqKWgHTegDaAhHQKuDFZbILgJ1fZQoaAZHQJh0GeHzpX9oB03oA2gIR0Crg7N0FKTTdX2UKGgGR0CYUKzRx95RaAdN6ANoCEdAq4WjuSfUWnV9lChoBkdAnNAoT4+KTGgHTegDaAhHQKuII31BdD91fZQoaAZHQJ4NNKODJ2doB03oA2gIR0Crj3+ZgG8mdX2UKGgGR0CcdQgKWszVaAdN6ANoCEdAq5AnjCHh0nV9lChoBkdAnoGjKHO8kGgHTegDaAhHQKuSPjDKoyd1fZQoaAZHQJxt7NbC79RoB03oA2gIR0CrlfUVSGahdX2UKGgGR0CbtrbI91U3aAdN6ANoCEdAq5788HObAnV9lChoBkdAnH/SimEXcmgHTegDaAhHQKufmJ40Mw11fZQoaAZHQJrz1D3M6iloB03oA2gIR0CroXgrYoRadX2UKGgGR0CXLU1XNke7aAdN6ANoCEdAq6QS+QEIPnV9lChoBkdAnxl0EX+ERWgHTegDaAhHQKurf7mdRSB1fZQoaAZHQJt4TVQQ+U1oB03oA2gIR0CrrBeVTrE+dX2UKGgGR0CczMTW5H3DaAdN6ANoCEdAq64CnLq2SnV9lChoBkdAmcw/cWTHKmgHTegDaAhHQKuxX81n/T91fZQoaAZHQJv+URYigTRoB03oA2gIR0CruuNiYsundX2UKGgGR0Ca6RJK8L8aaAdN6ANoCEdAq7t792ovSXV9lChoBkdAljz9aEBbOmgHTegDaAhHQKu9X6Mzdk91fZQoaAZHQJq16EPDpC9oB03oA2gIR0Crv91/lQuVdX2UKGgGR0CbbE1uBMBZaAdN6ANoCEdAq8dQbQ1JlXV9lChoBkdAnMunssxwhmgHTegDaAhHQKvH5yLhrFh1fZQoaAZHQJ2W1J7LMcJoB03oA2gIR0Cryb+vIOpbdX2UKGgGR0CfNJl4keIVaAdN6ANoCEdAq8y1qL0jDHV9lChoBkdAm6FyPQv6CWgHTegDaAhHQKvWsgUUO/d1fZQoaAZHQJy2WkpI+W5oB03oA2gIR0Cr10dk8RthdX2UKGgGR0CeG2bPyCnQaAdN6ANoCEdAq9kgmeDnNnV9lChoBkdAnNddIK+i8GgHTegDaAhHQKvbq+wC8vp1fZQoaAZHQJcjkuuieupoB03oA2gIR0Cr4yhtk4FSdX2UKGgGR0CdxNjfvWpZaAdN6ANoCEdAq+PCG8EmpnV9lChoBkdAnPBpQcghbGgHTegDaAhHQKvlr+MIeHV1fZQoaAZHQJydQ5+6RQtoB03oA2gIR0Cr6Dr6DXe4dX2UKGgGR0CaV/mNzbN9aAdN6ANoCEdAq/K0JrtVrHV9lChoBkdAm/0R8hLXc2gHTegDaAhHQKvzTcZccEN1fZQoaAZHQJv/Fyn1nNBoB03oA2gIR0Cr9SrKNhmYdX2UKGgGR0CbHoC0WuYAaAdN6ANoCEdAq/etBhQWN3V9lChoBkdAm2f/llsguGgHTegDaAhHQKv/D0J4SpR1fZQoaAZHQJwl9r433pRoB03oA2gIR0Cr/6at9x6wdX2UKGgGR0CaJJbzshPkaAdN6ANoCEdArAGFBMSK33V9lChoBkdAmi3UT6BRRGgHTegDaAhHQKwD/41P3zt1fZQoaAZHQJ0WbvphWo5oB03oA2gIR0CsDo3ko4MndX2UKGgGR0CdNlslb/wRaAdN6ANoCEdArA8mM+/xlXV9lChoBkdAm+J4wh4dIWgHTegDaAhHQKwQ+KziS7p1fZQoaAZHQJ2B+VW0Z3toB03oA2gIR0CsE2tzS1E3dX2UKGgGR0CeGi67NB4VaAdN6ANoCEdArBrcZ3s5XHV9lChoBkdAnzJoU8FINGgHTegDaAhHQKwbeT7l7t11fZQoaAZHQJ+oP8Jlar5oB03oA2gIR0CsHVx15jYqdX2UKGgGR0CgRxqAJ9iMaAdN6ANoCEdArB/I4+8oQXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec2f5ddfeb00b09945a7265835e4e2cc997c66a11cd0387af11aa8a6bfbbcf6b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f372fad087af44d8d49c48e7ce5c31bbc8cd2d1e213431cc47c50be720a90e90
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc32793ae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc32793aee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc32793af70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc32793f040>", "_build": "<function ActorCriticPolicy._build at 0x7fc32793f0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc32793f160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc32793f1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc32793f280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc32793f310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc32793f3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc32793f430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc32793f4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc3279393c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677516677925626680, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD/Nmz8IaSi/wS2LvXxO1T/+DOi/KTqZPzh9Ir/UNmu/2zGQP+eMdj/ofhs/Q1pXv4FJmr7yZfK+y4PFPnv6Bz2uJQu/64mQv1vqXL/Xb5g+lIqYP9yDGr5zR+69z+uBv08hGz+yDpY+EEofP/oPUb9NnwS9jUMjv55FMr3PGL8/8K5Mv072nj/w4zk9kCsNv0zUW7/Bb+Q/mepOP2YwJT+RtMK/uM4dQG61xj4vhqs8ZjCyP3yywLtHXu++PWx7vlsWsD9kL3Y+nNjbPmFCt79PIRs/sg6WPhBKHz/6D1G/t1d/P7tzTr/55oi+3jClPoh10b+Sd+m/AT63vgtQpT5Kn8U+l77hv6eWrr7qppW/2cvcv30X+r+b+Ru/uI0Pv9Fmnb/hSNk+a5xxv9FkZj8Azwg/RUoov7dKAL8TQVY/qDrTv7IOlj4QSh8/+g9Rvzvwpz9BLTa/8WYLvq/5eD/71Ky/z9c1v3YVcL+BcJS+87+AP7JkfL+QtSS+PTMRvpDqmL+iWVi/h07FPVANlr/JFLa/r5ldPqVjkr9mT6C+CVtyPxCasr50rTa/nSAtPk8hGz+yDpY+EEofP/oPUb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACWxfu1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9/s1vQAAAAD4wvK/AAAAALJQOD0AAAAAUgjbPwAAAAC37PK9AAAAADU+5T8AAAAAJeI/PQAAAAAa4QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULELNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB8n870AAAAAO3P/vwAAAABw5cQ9AAAAADqC6D8AAAAAyGoQPgAAAADpzgBAAAAAADItELsAAAAA3z/jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZBWrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIChqqw8AAAAAOFy9r8AAAAA58O7vQAAAACAzPw/AAAAAGSZgz0AAAAA1N/mPwAAAADrTbo9AAAAABdZ978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACI7ZY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYJQ5PQAAAACHi+y/AAAAAFOSur0AAAAAmCXxPwAAAACjJbk9AAAAAM95AEAAAAAAMUV3vQAAAACOSO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJow86r/82uMAWyUTegDjAF0lEdAqsqMcOskp3V9lChoBkdAnpu48hcJMWgHTegDaAhHQKrLv5MURFt1fZQoaAZHQJ0aWeqaPS5oB03oA2gIR0Cqz07kGRmsdX2UKGgGR0CfIq5aNdZ8aAdN6ANoCEdAqtNLyauwHXV9lChoBkdAnSNHt4RmLGgHTegDaAhHQKrbY6QNkOJ1fZQoaAZHQJ0JPDtPYWdoB03oA2gIR0Cq3AS3b212dX2UKGgGR0CeCAdfb9IgaAdN6ANoCEdAqt3mSMcZL3V9lChoBkdAnnZSVSn+AGgHTegDaAhHQKrgYXZ5AyF1fZQoaAZHQJ09whOgxrVoB03oA2gIR0Cq6b/rSmZWdX2UKGgGR0CecRAmzBykaAdN6ANoCEdAquqy0dBBzHV9lChoBkdAneosYl6Z6WgHTegDaAhHQKrtan7YTTR1fZQoaAZHQJ09eNuLrHFoB03oA2gIR0Cq7+37cfvGdX2UKGgGR0CfJmZEDyOJaAdN6ANoCEdAqvdmbgCOm3V9lChoBkdAnO62LcbiqGgHTegDaAhHQKr3/59E1EV1fZQoaAZHQJ4Qe+sYEW9oB03oA2gIR0Cq+esUZeiSdX2UKGgGR0CcpMmLtNSJaAdN6ANoCEdAqvx2pMpPRHV9lChoBkdAmZhJNKyv92gHTegDaAhHQKsFJTrmhdt1fZQoaAZHQJwyLeDWbw1oB03oA2gIR0CrBhX8wYcedX2UKGgGR0CdAIE7GNrCaAdN6ANoCEdAqwkIXbdrPHV9lChoBkdAnARBXnyNGWgHTegDaAhHQKsLx8Kohpx1fZQoaAZHQKAP4BJ7LMdoB03oA2gIR0CrEwmXHBDYdX2UKGgGR0Cf0yU+9rXUaAdN6ANoCEdAqxOfRqoIfXV9lChoBkdAnU6dcjZ+QWgHTegDaAhHQKsVfd5Y5kt1fZQoaAZHQJ8Wx76YVqNoB03oA2gIR0CrGANTkyULdX2UKGgGR0Cfe47bL2YfaAdN6ANoCEdAqyAwH7gsLHV9lChoBkdAnwneOS4e92gHTegDaAhHQKshEvPkaMt1fZQoaAZHQJ7P5AxBVuJoB03oA2gIR0CrI/qagElmdX2UKGgGR0CgenCu+yquaAdN6ANoCEdAqydy1Vo6CHV9lChoBkdAoF7kstkFwGgHTegDaAhHQKsuugsbvPV1fZQoaAZHQKAFsn6VMVVoB03oA2gIR0CrL1Fu3trsdX2UKGgGR0Cgr6Mj/uLKaAdN6ANoCEdAqzEpKQJXyXV9lChoBkdAn+H7xZuAJGgHTegDaAhHQKszosDGLk11fZQoaAZHQJ8Ha925hBtoB03oA2gIR0CrOus+NcW1dX2UKGgGR0Cgc52WIGhVaAdN6ANoCEdAqzvLB68g6nV9lChoBkdAoB7sRtgrpmgHTegDaAhHQKs+kMQ2/BZ1fZQoaAZHQJad9aaCtihoB03oA2gIR0CrQoyfUWl/dX2UKGgGR0CgUpsOXmeUaAdN6ANoCEdAq0pZR64Ue3V9lChoBkdAoFxjj5sTFmgHTegDaAhHQKtK88tf5UN1fZQoaAZHQJ/f8yJsO5JoB03oA2gIR0CrTNzj/+85dX2UKGgGR0CepW81XNkfaAdN6ANoCEdAq09lWp6yB3V9lChoBkdAmoS6pLmITGgHTegDaAhHQKtW440dilV1fZQoaAZHQJsPMzwc5sFoB03oA2gIR0CrV3287IT5dX2UKGgGR0CauoctGus+aAdN6ANoCEdAq1oiLMs6JnV9lChoBkdAmSv+KoAGS2gHTegDaAhHQKteEQQL/jt1fZQoaAZHQJnqC1YyO7xoB03oA2gIR0CrZp+FcpsodX2UKGgGR0CaSkLsa86FaAdN6ANoCEdAq2dE7ZFoc3V9lChoBkdAguWQ8fV7QmgHTegDaAhHQKtpTWtlqah1fZQoaAZHQHnyar7wazhoB03oA2gIR0CrbA2SMcZMdX2UKGgGR0CZITOIInjRaAdN6ANoCEdAq3OQnc+JQHV9lChoBkdAlZQH+IdlumgHTegDaAhHQKt0MMrEtNB1fZQoaAZHQJJzSP3i705oB03oA2gIR0CrdrjujRD1dX2UKGgGR0CU4hJsO5J9aAdN6ANoCEdAq3qOp2ll9XV9lChoBkdAlWFkPczqKWgHTegDaAhHQKuDFZbILgJ1fZQoaAZHQJh0GeHzpX9oB03oA2gIR0Crg7N0FKTTdX2UKGgGR0CYUKzRx95RaAdN6ANoCEdAq4WjuSfUWnV9lChoBkdAnNAoT4+KTGgHTegDaAhHQKuII31BdD91fZQoaAZHQJ4NNKODJ2doB03oA2gIR0Crj3+ZgG8mdX2UKGgGR0CcdQgKWszVaAdN6ANoCEdAq5AnjCHh0nV9lChoBkdAnoGjKHO8kGgHTegDaAhHQKuSPjDKoyd1fZQoaAZHQJxt7NbC79RoB03oA2gIR0CrlfUVSGahdX2UKGgGR0CbtrbI91U3aAdN6ANoCEdAq5788HObAnV9lChoBkdAnH/SimEXcmgHTegDaAhHQKufmJ40Mw11fZQoaAZHQJrz1D3M6iloB03oA2gIR0CroXgrYoRadX2UKGgGR0CXLU1XNke7aAdN6ANoCEdAq6QS+QEIPnV9lChoBkdAnxl0EX+ERWgHTegDaAhHQKurf7mdRSB1fZQoaAZHQJt4TVQQ+U1oB03oA2gIR0CrrBeVTrE+dX2UKGgGR0CczMTW5H3DaAdN6ANoCEdAq64CnLq2SnV9lChoBkdAmcw/cWTHKmgHTegDaAhHQKuxX81n/T91fZQoaAZHQJv+URYigTRoB03oA2gIR0CruuNiYsundX2UKGgGR0Ca6RJK8L8aaAdN6ANoCEdAq7t792ovSXV9lChoBkdAljz9aEBbOmgHTegDaAhHQKu9X6Mzdk91fZQoaAZHQJq16EPDpC9oB03oA2gIR0Crv91/lQuVdX2UKGgGR0CbbE1uBMBZaAdN6ANoCEdAq8dQbQ1JlXV9lChoBkdAnMunssxwhmgHTegDaAhHQKvH5yLhrFh1fZQoaAZHQJ2W1J7LMcJoB03oA2gIR0Cryb+vIOpbdX2UKGgGR0CfNJl4keIVaAdN6ANoCEdAq8y1qL0jDHV9lChoBkdAm6FyPQv6CWgHTegDaAhHQKvWsgUUO/d1fZQoaAZHQJy2WkpI+W5oB03oA2gIR0Cr10dk8RthdX2UKGgGR0CeG2bPyCnQaAdN6ANoCEdAq9kgmeDnNnV9lChoBkdAnNddIK+i8GgHTegDaAhHQKvbq+wC8vp1fZQoaAZHQJcjkuuieupoB03oA2gIR0Cr4yhtk4FSdX2UKGgGR0CdxNjfvWpZaAdN6ANoCEdAq+PCG8EmpnV9lChoBkdAnPBpQcghbGgHTegDaAhHQKvlr+MIeHV1fZQoaAZHQJydQ5+6RQtoB03oA2gIR0Cr6Dr6DXe4dX2UKGgGR0CaV/mNzbN9aAdN6ANoCEdAq/K0JrtVrHV9lChoBkdAm/0R8hLXc2gHTegDaAhHQKvzTcZccEN1fZQoaAZHQJv/Fyn1nNBoB03oA2gIR0Cr9SrKNhmYdX2UKGgGR0CbHoC0WuYAaAdN6ANoCEdAq/etBhQWN3V9lChoBkdAm2f/llsguGgHTegDaAhHQKv/D0J4SpR1fZQoaAZHQJwl9r433pRoB03oA2gIR0Cr/6at9x6wdX2UKGgGR0CaJJbzshPkaAdN6ANoCEdArAGFBMSK33V9lChoBkdAmi3UT6BRRGgHTegDaAhHQKwD/41P3zt1fZQoaAZHQJ0WbvphWo5oB03oA2gIR0CsDo3ko4MndX2UKGgGR0CdNlslb/wRaAdN6ANoCEdArA8mM+/xlXV9lChoBkdAm+J4wh4dIWgHTegDaAhHQKwQ+KziS7p1fZQoaAZHQJ2B+VW0Z3toB03oA2gIR0CsE2tzS1E3dX2UKGgGR0CeGi67NB4VaAdN6ANoCEdArBrcZ3s5XHV9lChoBkdAnzJoU8FINGgHTegDaAhHQKwbeT7l7t11fZQoaAZHQJ+oP8Jlar5oB03oA2gIR0CsHVx15jYqdX2UKGgGR0CgRxqAJ9iMaAdN6ANoCEdArB/I4+8oQXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08ebd43bb07fce06b420a34b985674e6ebc203a9403f59244eb76bfc2c8f5d5c
|
3 |
+
size 1232151
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1982.0514347452759, "std_reward": 31.74971113110045, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T18:02:42.580334"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59c9e60e5ec5b7101a6eb3661d63c37f7413bc471af5c159c28a76f17d41bcdf
|
3 |
+
size 2136
|