Initial release
Browse files- README.md +73 -0
- config.json +45 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenization_bart_japanese.py +314 -0
- tokenizer_config.json +22 -0
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ja
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- bart
|
7 |
+
- pytorch
|
8 |
+
datasets:
|
9 |
+
- wikipedia
|
10 |
+
---
|
11 |
+
# bart-base-japanese
|
12 |
+
|
13 |
+
This model is converted from the original [Japanese BART Pretrained model](https://nlp.ist.i.kyoto-u.ac.jp/?BART%E6%97%A5%E6%9C%AC%E8%AA%9EPretrained%E3%83%A2%E3%83%87%E3%83%AB) released by Kyoto University.
|
14 |
+
|
15 |
+
Both the encoder and decoder outputs are identical to the original Fairseq model.
|
16 |
+
|
17 |
+
### How to use the model
|
18 |
+
|
19 |
+
The input text should be tokenized by [BartJapaneseTokenizer](https://huggingface.co/Formzu/bart-base-japanese/blob/main/tokenization_bart_japanese.py).
|
20 |
+
|
21 |
+
Tokenizer requirements:
|
22 |
+
* [Juman++](https://github.com/ku-nlp/jumanpp)
|
23 |
+
* [zenhan](https://pypi.org/project/zenhan/)
|
24 |
+
* [pyknp](https://pypi.org/project/pyknp/)
|
25 |
+
* [sentencepiece](https://pypi.org/project/sentencepiece/)
|
26 |
+
|
27 |
+
#### Simple FillMaskPipeline
|
28 |
+
```python
|
29 |
+
from transformers import AutoModelForSeq2SeqLM, pipeline
|
30 |
+
from tokenization_bart_japanese import BartJapaneseTokenizer
|
31 |
+
|
32 |
+
model_name = "Formzu/bart-base-japanese"
|
33 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
34 |
+
tokenizer = BartJapaneseTokenizer.from_pretrained(model_name)
|
35 |
+
|
36 |
+
masked_text = "天気が<mask>から散歩しましょう。"
|
37 |
+
|
38 |
+
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
39 |
+
out = fill_mask(masked_text)
|
40 |
+
print(out)
|
41 |
+
# [{'score': 0.19255658984184265, 'token': 1718, 'token_str': 'よく', 'sequence': '天気 が よく から 散歩 し ましょう 。'},
|
42 |
+
# {'score': 0.14426815509796143, 'token': 5478, 'token_str': '良く', 'sequence': '天気 が 良く から 散歩 し ましょう 。'},
|
43 |
+
# {'score': 0.05554169788956642, 'token': 6561, 'token_str': '悪い', 'sequence': '天気 が 悪い から 散歩 し ましょう 。'},
|
44 |
+
# {'score': 0.05524599179625511, 'token': 3553, 'token_str': '良い', 'sequence': '天気 が 良い から 散歩 し ましょう 。'},
|
45 |
+
# {'score': 0.03720080852508545, 'token': 1370, 'token_str': '良', 'sequence': '天気 が 良 から 散歩 し ましょう 。'}]
|
46 |
+
```
|
47 |
+
#### Text Generation
|
48 |
+
```python
|
49 |
+
from transformers import AutoModelForSeq2SeqLM
|
50 |
+
from tokenization_bart_japanese import BartJapaneseTokenizer
|
51 |
+
import torch
|
52 |
+
|
53 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
54 |
+
|
55 |
+
model_name = "Formzu/bart-base-japanese"
|
56 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
57 |
+
tokenizer = BartJapaneseTokenizer.from_pretrained(model_name)
|
58 |
+
|
59 |
+
masked_text = "天気が<mask>から散歩しましょう。"
|
60 |
+
|
61 |
+
inp = tokenizer(masked_text, return_tensors='pt').to(device)
|
62 |
+
|
63 |
+
out = model.generate(**inp, num_beams=1, min_length=0, max_length=20, early_stopping=True, no_repeat_ngram_size=2)
|
64 |
+
res = "".join(tokenizer.decode(out.squeeze(0).tolist(), skip_special_tokens=True).split(" "))
|
65 |
+
print(res)
|
66 |
+
# 天気がよくなってから散歩しましょう。天気のよく合っているところにいる
|
67 |
+
```
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.21.2
|
72 |
+
- Pytorch 1.12.1+cu116
|
73 |
+
- Tokenizers 0.12.1
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bart-base-japanese",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"add_final_layer_norm": true,
|
6 |
+
"architectures": [
|
7 |
+
"MBartForConditionalGeneration"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"d_model": 768,
|
13 |
+
"decoder_attention_heads": 12,
|
14 |
+
"decoder_ffn_dim": 3072,
|
15 |
+
"decoder_layerdrop": 0.0,
|
16 |
+
"decoder_layers": 6,
|
17 |
+
"dropout": 0.0,
|
18 |
+
"encoder_attention_heads": 12,
|
19 |
+
"encoder_ffn_dim": 3072,
|
20 |
+
"encoder_layerdrop": 0.0,
|
21 |
+
"encoder_layers": 6,
|
22 |
+
"eos_token_id": 2,
|
23 |
+
"forced_eos_token_id": 2,
|
24 |
+
"id2label": {
|
25 |
+
"0": "LABEL_0",
|
26 |
+
"1": "LABEL_1",
|
27 |
+
"2": "LABEL_2"
|
28 |
+
},
|
29 |
+
"init_std": 0.02,
|
30 |
+
"is_encoder_decoder": true,
|
31 |
+
"label2id": {
|
32 |
+
"LABEL_0": 0,
|
33 |
+
"LABEL_1": 1,
|
34 |
+
"LABEL_2": 2
|
35 |
+
},
|
36 |
+
"max_position_embeddings": 1024,
|
37 |
+
"model_type": "mbart",
|
38 |
+
"num_hidden_layers": 6,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"scale_embedding": false,
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.21.2",
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 32002
|
45 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74367555daf7ab2ed66635f49f84bde097db57d11cb0c6c293410645a0f3f34f
|
3 |
+
size 501801969
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff9226612d029bfade0621f401cb605740dc0a8ca88400e89ffdce26702ee266
|
3 |
+
size 588767
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenization_bart_japanese.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from contextlib import contextmanager
|
18 |
+
from shutil import copyfile
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple
|
20 |
+
|
21 |
+
import sentencepiece as spm
|
22 |
+
|
23 |
+
from transformers import AddedToken, PreTrainedTokenizer
|
24 |
+
from transformers import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
SPIECE_UNDERLINE = "▁"
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
32 |
+
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
35 |
+
"vocab_file": {
|
36 |
+
"Formzu/bart-base-japanese": (
|
37 |
+
"https://huggingface.co/Formzu/bart-base-japanese/resolve/main/sentencepiece.bpe.model"
|
38 |
+
),
|
39 |
+
"Formzu/bart-large-japanese": (
|
40 |
+
"https://huggingface.co/Formzu/bart-large-japanese/resolve/main/sentencepiece.bpe.model"
|
41 |
+
),
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
46 |
+
"Formzu/bart-base-japanese": 1024,
|
47 |
+
"Formzu/bart-large-japanese": 1024,
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
class BartJapaneseTokenizer(PreTrainedTokenizer):
|
52 |
+
"""
|
53 |
+
Construct a BART tokenizer for Japanese text.
|
54 |
+
|
55 |
+
Adapted from [`RobertaTokenizer`], [`XLNetTokenizer`] and [`MBartTokenizer`]. Based on
|
56 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
57 |
+
|
58 |
+
The tokenization method is `<bos> <tokens> <eos>`.
|
59 |
+
|
60 |
+
Examples:
|
61 |
+
|
62 |
+
```python
|
63 |
+
>>> from tokenization_bart_japanese import BartJapaneseTokenizer
|
64 |
+
|
65 |
+
>>> tokenizer = BartJapaneseTokenizer.from_pretrained("Formzu/bart-base-japanese")
|
66 |
+
>>> example_japanese_phrase = "今日は晴れています。"
|
67 |
+
>>> expected_label = "天気"
|
68 |
+
>>> inputs = tokenizer(example_japanese_phrase, return_tensors="pt")
|
69 |
+
>>> labels = tokenizer(expected_label, return_tensors="pt")
|
70 |
+
>>> inputs["labels"] = labels["input_ids"]
|
71 |
+
```"""
|
72 |
+
|
73 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
74 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
75 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
76 |
+
model_input_names = ["input_ids", "attention_mask"]
|
77 |
+
|
78 |
+
prefix_tokens: List[int] = []
|
79 |
+
suffix_tokens: List[int] = []
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
vocab_file,
|
84 |
+
bos_token="<s>",
|
85 |
+
eos_token="</s>",
|
86 |
+
sep_token="</s>",
|
87 |
+
cls_token="<s>",
|
88 |
+
unk_token="<unk>",
|
89 |
+
pad_token="<pad>",
|
90 |
+
mask_token="<mask>",
|
91 |
+
tokenizer_file=None,
|
92 |
+
src_lang=None,
|
93 |
+
tgt_lang=None,
|
94 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
95 |
+
additional_special_tokens=None,
|
96 |
+
**kwargs
|
97 |
+
):
|
98 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
99 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
100 |
+
|
101 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
102 |
+
|
103 |
+
super().__init__(
|
104 |
+
bos_token=bos_token,
|
105 |
+
eos_token=eos_token,
|
106 |
+
unk_token=unk_token,
|
107 |
+
sep_token=sep_token,
|
108 |
+
cls_token=cls_token,
|
109 |
+
pad_token=pad_token,
|
110 |
+
mask_token=mask_token,
|
111 |
+
tokenizer_file=None,
|
112 |
+
src_lang=src_lang,
|
113 |
+
tgt_lang=tgt_lang,
|
114 |
+
additional_special_tokens=additional_special_tokens,
|
115 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
116 |
+
**kwargs,
|
117 |
+
)
|
118 |
+
|
119 |
+
|
120 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
121 |
+
self.sp_model.Load(str(vocab_file))
|
122 |
+
self.vocab_file = vocab_file
|
123 |
+
try:
|
124 |
+
from zenhan import h2z
|
125 |
+
except ModuleNotFoundError as error:
|
126 |
+
raise error.__class__(
|
127 |
+
"You need to install zenhan to use BartJapaneseTokenizer."
|
128 |
+
"See https://pypi.org/project/zenhan/ for installation."
|
129 |
+
)
|
130 |
+
try:
|
131 |
+
from pyknp import Juman
|
132 |
+
except ModuleNotFoundError as error:
|
133 |
+
raise error.__class__(
|
134 |
+
"You need to install pyknp to use BartJapaneseTokenizer."
|
135 |
+
"See https://pypi.org/project/pyknp/ for installation."
|
136 |
+
)
|
137 |
+
|
138 |
+
self.h2z = h2z
|
139 |
+
self.jumanpp = Juman()
|
140 |
+
|
141 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
142 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
143 |
+
# -------- | ------- | ------- | ------ | ------- | ------ | ------ | ------ | ------ | ------ | ------
|
144 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | '▁の' | '▁、' | '▁。' | '▁に' | '▁は' | '▁を'
|
145 |
+
# spm | '<unk>' | '<s>' | '</s>' | '▁の' | '▁、' | '▁。' | '▁に' | '▁は' | '▁を' | '▁と'
|
146 |
+
|
147 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
148 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
149 |
+
|
150 |
+
# The first "real" token "▁の" has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
151 |
+
self.fairseq_offset = 1
|
152 |
+
|
153 |
+
self.sp_model_size = len(self.sp_model)
|
154 |
+
|
155 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
|
156 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
157 |
+
|
158 |
+
self.set_special_tokens()
|
159 |
+
|
160 |
+
def __getstate__(self):
|
161 |
+
state = self.__dict__.copy()
|
162 |
+
state["sp_model"] = None
|
163 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
164 |
+
return state
|
165 |
+
|
166 |
+
def __setstate__(self, d):
|
167 |
+
self.__dict__ = d
|
168 |
+
|
169 |
+
# for backward compatibility
|
170 |
+
if not hasattr(self, "sp_model_kwargs"):
|
171 |
+
self.sp_model_kwargs = {}
|
172 |
+
|
173 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
174 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
175 |
+
|
176 |
+
@property
|
177 |
+
def vocab_size(self):
|
178 |
+
return len(self.sp_model) + self.fairseq_offset + 1 # Plus 1 for the mask token
|
179 |
+
|
180 |
+
def get_special_tokens_mask(
|
181 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
182 |
+
) -> List[int]:
|
183 |
+
"""
|
184 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
185 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
token_ids_0 (`List[int]`):
|
189 |
+
List of IDs.
|
190 |
+
token_ids_1 (`List[int]`, *optional*):
|
191 |
+
Optional second list of IDs for sequence pairs.
|
192 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
193 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
197 |
+
"""
|
198 |
+
|
199 |
+
if already_has_special_tokens:
|
200 |
+
return super().get_special_tokens_mask(
|
201 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
202 |
+
)
|
203 |
+
|
204 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
205 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
206 |
+
if token_ids_1 is None:
|
207 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
208 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
209 |
+
|
210 |
+
def build_inputs_with_special_tokens(
|
211 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
212 |
+
) -> List[int]:
|
213 |
+
"""
|
214 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
215 |
+
adding special tokens. A Japanese BART sequence has the following format, where `X` represents the sequence:
|
216 |
+
|
217 |
+
- `input_ids` (for encoder) `[bos] X [eos]`
|
218 |
+
- `decoder_input_ids`: (for decoder) `[bos] X [eos]`
|
219 |
+
|
220 |
+
Pairs of sequences are not the expected use case, but they will be handled without a separator.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
token_ids_0 (`List[int]`):
|
224 |
+
List of IDs to which the special tokens will be added.
|
225 |
+
token_ids_1 (`List[int]`, *optional*):
|
226 |
+
Optional second list of IDs for sequence pairs.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
230 |
+
"""
|
231 |
+
if token_ids_1 is None:
|
232 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
233 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
234 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
235 |
+
|
236 |
+
def create_token_type_ids_from_sequences(
|
237 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
238 |
+
) -> List[int]:
|
239 |
+
"""
|
240 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. Japanese BART does not
|
241 |
+
make use of token type ids, therefore a list of zeros is returned.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
token_ids_0 (`List[int]`):
|
245 |
+
List of IDs.
|
246 |
+
token_ids_1 (`List[int]`, *optional*):
|
247 |
+
Optional second list of IDs for sequence pairs.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
`List[int]`: List of zeros.
|
251 |
+
|
252 |
+
"""
|
253 |
+
|
254 |
+
sep = [self.sep_token_id]
|
255 |
+
cls = [self.cls_token_id]
|
256 |
+
|
257 |
+
if token_ids_1 is None:
|
258 |
+
return len(cls + token_ids_0 + sep) * [0]
|
259 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
260 |
+
|
261 |
+
def get_vocab(self):
|
262 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
263 |
+
vocab.update(self.added_tokens_encoder)
|
264 |
+
return vocab
|
265 |
+
|
266 |
+
def _tokenize(self, text: str) -> List[str]:
|
267 |
+
text = text
|
268 |
+
text = self.h2z(text)
|
269 |
+
text = self.jumanpp.analysis(text)
|
270 |
+
text = ' '.join([mrph.midasi for mrph in text.mrph_list()])
|
271 |
+
return self.sp_model.encode(text, out_type=str)
|
272 |
+
|
273 |
+
def _convert_token_to_id(self, token):
|
274 |
+
"""Converts a token (str) in an id using the vocab."""
|
275 |
+
if token in self.fairseq_tokens_to_ids:
|
276 |
+
return self.fairseq_tokens_to_ids[token]
|
277 |
+
spm_id = self.sp_model.PieceToId(token)
|
278 |
+
|
279 |
+
# Need to return unknown token if the SP model returned 0
|
280 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
281 |
+
|
282 |
+
def _convert_id_to_token(self, index):
|
283 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
284 |
+
if index in self.fairseq_ids_to_tokens:
|
285 |
+
return self.fairseq_ids_to_tokens[index]
|
286 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
287 |
+
|
288 |
+
def convert_tokens_to_string(self, tokens):
|
289 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
290 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
291 |
+
return out_string
|
292 |
+
|
293 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
294 |
+
if not os.path.isdir(save_directory):
|
295 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
296 |
+
return
|
297 |
+
out_vocab_file = os.path.join(
|
298 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
299 |
+
)
|
300 |
+
|
301 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
302 |
+
copyfile(self.vocab_file, out_vocab_file)
|
303 |
+
elif not os.path.isfile(self.vocab_file):
|
304 |
+
with open(out_vocab_file, "wb") as fi:
|
305 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
306 |
+
fi.write(content_spiece_model)
|
307 |
+
|
308 |
+
return (out_vocab_file,)
|
309 |
+
|
310 |
+
def set_special_tokens(self) -> None:
|
311 |
+
"""Set prefix=[bos], suffix=[eos]."""
|
312 |
+
self.prefix_tokens = [self.bos_token_id]
|
313 |
+
self.suffix_tokens = [self.eos_token_id]
|
314 |
+
self.add_tokens(self.all_special_tokens_extended, special_tokens=True)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"pad_token": "<pad>",
|
15 |
+
"sep_token": "</s>",
|
16 |
+
"sp_model_kwargs": {},
|
17 |
+
"src_lang": null,
|
18 |
+
"tgt_lang": null,
|
19 |
+
"tokenizer_class": "BartJapaneseTokenizer",
|
20 |
+
"tokenizer_file": null,
|
21 |
+
"unk_token": "<unk>"
|
22 |
+
}
|