adding main files
Browse files- .gitignore +3 -0
- Dockerfile +7 -0
- eval.py +147 -0
- mteb_meta.py +118 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.DS_Store
|
3 |
+
*.json
|
Dockerfile
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM huggingface/transformers-pytorch-cpu:latest
|
2 |
+
|
3 |
+
# install requirements
|
4 |
+
COPY requirements.txt .
|
5 |
+
RUN pip install -r requirements.txt
|
6 |
+
|
7 |
+
|
eval.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mteb import MTEB
|
2 |
+
import torch
|
3 |
+
import clip
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
MODEL, PREPROCESS = clip.load("RN50", device=DEVICE)
|
9 |
+
|
10 |
+
|
11 |
+
TASK_LIST_CLASSIFICATION = [
|
12 |
+
"AmazonCounterfactualClassification",
|
13 |
+
"AmazonPolarityClassification",
|
14 |
+
"AmazonReviewsClassification",
|
15 |
+
"Banking77Classification",
|
16 |
+
"EmotionClassification",
|
17 |
+
"ImdbClassification",
|
18 |
+
"MassiveIntentClassification",
|
19 |
+
"MassiveScenarioClassification",
|
20 |
+
"MTOPDomainClassification",
|
21 |
+
"MTOPIntentClassification",
|
22 |
+
"ToxicConversationsClassification",
|
23 |
+
"TweetSentimentExtractionClassification",
|
24 |
+
]
|
25 |
+
|
26 |
+
TASK_LIST_CLUSTERING = [
|
27 |
+
"ArxivClusteringP2P",
|
28 |
+
"ArxivClusteringS2S",
|
29 |
+
"BiorxivClusteringP2P",
|
30 |
+
"BiorxivClusteringS2S",
|
31 |
+
"MedrxivClusteringP2P",
|
32 |
+
"MedrxivClusteringS2S",
|
33 |
+
"RedditClustering",
|
34 |
+
"RedditClusteringP2P",
|
35 |
+
"StackExchangeClustering",
|
36 |
+
"StackExchangeClusteringP2P",
|
37 |
+
"TwentyNewsgroupsClustering",
|
38 |
+
]
|
39 |
+
|
40 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
41 |
+
"SprintDuplicateQuestions",
|
42 |
+
"TwitterSemEval2015",
|
43 |
+
"TwitterURLCorpus",
|
44 |
+
]
|
45 |
+
|
46 |
+
TASK_LIST_RERANKING = [
|
47 |
+
"AskUbuntuDupQuestions",
|
48 |
+
"MindSmallReranking",
|
49 |
+
"SciDocsRR",
|
50 |
+
"StackOverflowDupQuestions",
|
51 |
+
]
|
52 |
+
|
53 |
+
TASK_LIST_RETRIEVAL = [
|
54 |
+
"ArguAna",
|
55 |
+
"ClimateFEVER",
|
56 |
+
"CQADupstackAndroidRetrieval",
|
57 |
+
"CQADupstackEnglishRetrieval",
|
58 |
+
"CQADupstackGamingRetrieval",
|
59 |
+
"CQADupstackGisRetrieval",
|
60 |
+
"CQADupstackMathematicaRetrieval",
|
61 |
+
"CQADupstackPhysicsRetrieval",
|
62 |
+
"CQADupstackProgrammersRetrieval",
|
63 |
+
"CQADupstackStatsRetrieval",
|
64 |
+
"CQADupstackTexRetrieval",
|
65 |
+
"CQADupstackUnixRetrieval",
|
66 |
+
"CQADupstackWebmastersRetrieval",
|
67 |
+
"CQADupstackWordpressRetrieval",
|
68 |
+
"DBPedia",
|
69 |
+
"FEVER",
|
70 |
+
"FiQA2018",
|
71 |
+
"HotpotQA",
|
72 |
+
"MSMARCO",
|
73 |
+
"NFCorpus",
|
74 |
+
"NQ",
|
75 |
+
"QuoraRetrieval",
|
76 |
+
"SCIDOCS",
|
77 |
+
"SciFact",
|
78 |
+
"Touche2020",
|
79 |
+
"TRECCOVID",
|
80 |
+
]
|
81 |
+
|
82 |
+
TASK_LIST_STS = [
|
83 |
+
"BIOSSES",
|
84 |
+
"SICK-R",
|
85 |
+
"STS12",
|
86 |
+
"STS13",
|
87 |
+
"STS14",
|
88 |
+
"STS15",
|
89 |
+
"STS16",
|
90 |
+
"STS17",
|
91 |
+
"STS22",
|
92 |
+
"STSBenchmark",
|
93 |
+
"SummEval",
|
94 |
+
]
|
95 |
+
|
96 |
+
TASK_LIST = TASK_LIST_CLASSIFICATION
|
97 |
+
+ TASK_LIST_CLUSTERING
|
98 |
+
+ TASK_LIST_PAIR_CLASSIFICATION
|
99 |
+
+ TASK_LIST_RERANKING
|
100 |
+
+ TASK_LIST_RETRIEVAL
|
101 |
+
+ TASK_LIST_STS
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
class ClipModel:
|
107 |
+
"""
|
108 |
+
This is an wrapper class for the clip embedding model.
|
109 |
+
"""
|
110 |
+
|
111 |
+
def encode(self, sentences, batch_size=1, **kwargs):
|
112 |
+
"""Returns a list of embeddings for the given sentences.
|
113 |
+
Args:
|
114 |
+
sentences (`List[str]`): List of sentences to encode
|
115 |
+
batch_size (`int`): Batch size for the encoding
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
|
119 |
+
"""
|
120 |
+
embeddings = []
|
121 |
+
for i in range(0, len(sentences)):
|
122 |
+
batch = sentences[i]
|
123 |
+
try:
|
124 |
+
text = clip.tokenize(batch).to(DEVICE)[
|
125 |
+
:, :77
|
126 |
+
] # clip.tokenize(batch).to(DEVICE)
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
text_features = MODEL.encode_text(text)
|
130 |
+
|
131 |
+
except:
|
132 |
+
print("too long token")
|
133 |
+
text = clip.tokenize(batch[: (77 * 2)]).to(DEVICE)[
|
134 |
+
:, :77
|
135 |
+
] # clip.tokenize(batch).to(DEVICE)
|
136 |
+
|
137 |
+
with torch.no_grad():
|
138 |
+
text_features = MODEL.encode_text(text)
|
139 |
+
|
140 |
+
embeddings.append(text_features.cpu().numpy().squeeze())
|
141 |
+
|
142 |
+
return embeddings
|
143 |
+
|
144 |
+
|
145 |
+
model = ClipModel()
|
146 |
+
evaluation = MTEB(tasks=TASK_LIST, output_folder=f"results/clip/", task_langs=["en"])
|
147 |
+
evaluation.run(model)
|
mteb_meta.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage: python mteb_meta.py path_to_results_folder
|
3 |
+
|
4 |
+
Creates evaluation results metadata for the model card.
|
5 |
+
E.g.
|
6 |
+
---
|
7 |
+
tags:
|
8 |
+
- mteb
|
9 |
+
model-index:
|
10 |
+
- name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: classification
|
14 |
+
dataset:
|
15 |
+
type: mteb/banking77
|
16 |
+
name: MTEB Banking77
|
17 |
+
config: default
|
18 |
+
split: test
|
19 |
+
revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
|
20 |
+
metrics:
|
21 |
+
- type: accuracy
|
22 |
+
value: 84.49350649350649
|
23 |
+
---
|
24 |
+
"""
|
25 |
+
|
26 |
+
import json
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
import sys
|
30 |
+
|
31 |
+
from mteb import MTEB
|
32 |
+
|
33 |
+
logging.basicConfig(level=logging.INFO)
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
results_folder = sys.argv[1].strip("/")
|
38 |
+
model_name = results_folder.split("/")[-1]
|
39 |
+
|
40 |
+
all_results = {}
|
41 |
+
|
42 |
+
for file_name in os.listdir(results_folder):
|
43 |
+
if not file_name.endswith(".json"):
|
44 |
+
logger.info(f"Skipping non-json {file_name}")
|
45 |
+
continue
|
46 |
+
with open(os.path.join(results_folder, file_name), "r", encoding="utf-8") as f:
|
47 |
+
results = json.load(f)
|
48 |
+
all_results = {**all_results, **{file_name.replace(".json", ""): results}}
|
49 |
+
|
50 |
+
MARKER = "---"
|
51 |
+
TAGS = "tags:"
|
52 |
+
MTEB_TAG = "- mteb"
|
53 |
+
HEADER = "model-index:"
|
54 |
+
MODEL = f"- name: {model_name}"
|
55 |
+
RES = " results:"
|
56 |
+
|
57 |
+
META_STRING = "\n".join([MARKER, TAGS, MTEB_TAG, HEADER, MODEL, RES])
|
58 |
+
|
59 |
+
|
60 |
+
ONE_TASK = " - task:\n type: {}\n dataset:\n type: {}\n name: {}\n config: {}\n split: {}\n revision: {}\n metrics:"
|
61 |
+
ONE_METRIC = " - type: {}\n value: {}"
|
62 |
+
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold"]
|
63 |
+
|
64 |
+
for ds_name, res_dict in sorted(all_results.items()):
|
65 |
+
mteb_desc = (
|
66 |
+
MTEB(tasks=[ds_name.replace("CQADupstackRetrieval", "CQADupstackAndroidRetrieval")])
|
67 |
+
.tasks[0]
|
68 |
+
.description
|
69 |
+
)
|
70 |
+
hf_hub_name = mteb_desc.get("hf_hub_name", mteb_desc.get("beir_name"))
|
71 |
+
if "CQADupstack" in ds_name:
|
72 |
+
hf_hub_name = "BeIR/cqadupstack"
|
73 |
+
mteb_type = mteb_desc["type"]
|
74 |
+
revision = res_dict.get("dataset_revision") # Okay if it's None
|
75 |
+
split = "test"
|
76 |
+
if ds_name == "MSMARCO":
|
77 |
+
split = "dev" if "dev" in res_dict else "validation"
|
78 |
+
if split not in res_dict:
|
79 |
+
logger.info(f"Skipping {ds_name} as split {split} not present.")
|
80 |
+
continue
|
81 |
+
res_dict = res_dict.get(split)
|
82 |
+
for lang in mteb_desc["eval_langs"]:
|
83 |
+
mteb_name = f"MTEB {ds_name}"
|
84 |
+
mteb_name += f" ({lang})" if len(mteb_desc["eval_langs"]) > 1 else ""
|
85 |
+
# For English there is no language key if it's the only language
|
86 |
+
test_result_lang = res_dict.get(lang) if len(mteb_desc["eval_langs"]) > 1 else res_dict
|
87 |
+
# Skip if the language was not found but it has other languages
|
88 |
+
if test_result_lang is None:
|
89 |
+
continue
|
90 |
+
META_STRING += "\n" + ONE_TASK.format(
|
91 |
+
mteb_type,
|
92 |
+
hf_hub_name,
|
93 |
+
mteb_name,
|
94 |
+
lang if len(mteb_desc["eval_langs"]) > 1 else "default",
|
95 |
+
split,
|
96 |
+
revision
|
97 |
+
)
|
98 |
+
for (metric, score) in test_result_lang.items():
|
99 |
+
if not isinstance(score, dict):
|
100 |
+
score = {metric: score}
|
101 |
+
for sub_metric, sub_score in score.items():
|
102 |
+
if any([x in sub_metric for x in SKIP_KEYS]):
|
103 |
+
continue
|
104 |
+
META_STRING += "\n" + ONE_METRIC.format(
|
105 |
+
f"{metric}_{sub_metric}" if metric != sub_metric else metric,
|
106 |
+
# All MTEB scores are 0-1, multiply them by 100 for 3 reasons:
|
107 |
+
# 1) It's easier to visually digest (You need two chars less: "0.1" -> "1")
|
108 |
+
# 2) Others may multiply them by 100, when building on MTEB making it confusing what the range is
|
109 |
+
# This happend with Text and Code Embeddings paper (OpenAI) vs original BEIR paper
|
110 |
+
# 3) It's accepted practice (SuperGLUE, GLUE are 0-100)
|
111 |
+
sub_score * 100,
|
112 |
+
)
|
113 |
+
|
114 |
+
META_STRING += "\n" + MARKER
|
115 |
+
if os.path.exists("./mteb_metadata.md"):
|
116 |
+
logger.warning("Overwriting mteb_metadata.md")
|
117 |
+
with open(f"./mteb_metadata.md", "w") as f:
|
118 |
+
f.write(META_STRING)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mteb
|
2 |
+
ftfy
|
3 |
+
regex
|
4 |
+
tqdm
|
5 |
+
git+https://github.com/openai/CLIP.git
|