FollishBoi
commited on
Commit
•
33d6e40
1
Parent(s):
aa75eaf
uploading the trained model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2-try5.zip +3 -0
- ppo-LunarLander-v2-try5/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-try5/data +94 -0
- ppo-LunarLander-v2-try5/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-try5/policy.pth +3 -0
- ppo-LunarLander-v2-try5/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-try5/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 299.86 +/- 20.60
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48c9758170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48c9758200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48c9758290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48c9758320>", "_build": "<function ActorCriticPolicy._build at 0x7f48c97583b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f48c9758440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48c97584d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48c9758560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48c97585f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48c9758680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48c9758710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f48c979bc30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 16130816, "_total_timesteps": 16100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652215644.508045, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAABc9zx+n7w/dr/gPZuRVb61CYU91k6uPQAAAAAAAAAAmnYvPS84GD7a4om+iwD+vjOonDyW0iG+AAAAAAAAAAD9aWO+weSIP1765b7nxRm/1Uj8vibCe74AAAAAAAAAAM3sb7saU54/Ju6CvJEIK7+Zz4m8SiwbvQAAAAAAAAAAmlFJO20ETz9mmDc8sCuCv9m/CrxiJxI8AAAAAAAAAACABzQ+BMwjPrnaEr9w3RG/tLWTPdyKwL4AAAAAAAAAAGZ6Cz3hApe6A0Squ6IojjyYr9O72zR3PQAAgD8AAIA/Gj8ZPfYtDT8+Nls8ZjNgv8PTtT3j/M48AAAAAAAAAAC2O1u+4KpyPyJz373BYhy/IvHpvtJnIr0AAAAAAAAAAJrzVr2P1ga6kNM3PlZW672vpx46u5OAvwAAAAAAAAAAjRSoPTtqrT/q+W8+1xMGv3ylgz5Gwew9AAAAAAAAAAA6DGC+xwJDP/a2TD18HBW/EZbqvpIN3j0AAAAAAAAAALqaMb4SVnI+3IcBP2SLIb/qjoy+mTm8PgAAAAAAAAAAAOTrux0/Kz5nkYM92aTkvvRS/Tzz8uA9AAAAAAAAAACAW209nOi6P/R0kD5bG7C9o8QaPuuwwD4AAAAAAAAAAGZYTDyPNnm6rrrsOk9S1zUdfcO6s4QKugAAgD8AAIA/W7+YvltZZz8i4wg+ZRgmvwhMF78mryY+AAAAAAAAAAAzi0y9C6CmP9UYQL6NnAO/aizgvfIK8b0AAAAAAAAAAAALpTxI44u6OCNCte8C+q52OTu7qodJNAAAgD8AAIA/psn3vXPe4z5WnBg+I9lKvxN+Pb74vSQ+AAAAAAAAAADzFXc+1M5gPxLWlTz6HTy/ZmEHPzKU270AAAAAAAAAALNBRb1cO166Og0CvGlXojZCA586wLATtgAAAAAAAIA/etMdPmhScz9gxW0+3LZOv6476D7u0cE8AAAAAAAAAACasMg8Rhy8P9M+AT4ZinS9jTlJPStS8D0AAAAAAAAAADMDuLo9zhm7DpMdvWs7sTw12FE8ddqXvQAAgD8AAIA/mmtXvXGauD3SI2c+AVTMvgPVGD1mRi8+AAAAAAAAAACagXi9lV4FP4XEaD3QV0q/i1spvhq6zzwAAAAAAAAAAEbWAb7lMIs/iFCivqreI79LtKK+G3MEvgAAAAAAAAAAZnA8vd+9pDwMfaE+meavvsvXzD2q0oM+AAAAAAAAAACAI/S9bU+BPrWTsD58hSe/LWRQvWmhgT4AAAAAAAAAAAA4L7whVrw980ncPZ11tr4EgEo9CN3pPQAAAAAAAAAAzabvPI8KUDvWt6y+bz5XvkY2RL4qcU4/AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.001914037267080726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh6JAn0gkckCUhpRSlIwBbJRLv4wBdJRHQMdbtYe9zwN1fZQoaAZoCWgPQwh7vJAOT9NyQJSGlFKUaBVLq2gWR0DHW7gzDXOGdX2UKGgGaAloD0MI/7J78jC3cECUhpRSlGgVS6BoFkdAx1u/+T/yXnV9lChoBmgJaA9DCMyXF2DfzXFAlIaUUpRoFUuraBZHQMdbwXXAdn11fZQoaAZoCWgPQwjGwaVjDo1xQJSGlFKUaBVLwWgWR0DHW8djVhCudX2UKGgGaAloD0MIo5QQrGoMcUCUhpRSlGgVS5RoFkdAx1vYf6oES3V9lChoBmgJaA9DCCU/4lds+HFAlIaUUpRoFUvAaBZHQMdb2MH8jzJ1fZQoaAZoCWgPQwgkRPmCVshxQJSGlFKUaBVLpGgWR0DHW95mCiAUdX2UKGgGaAloD0MIj8ahftcIdECUhpRSlGgVS8loFkdAx1vlN7jT8nV9lChoBmgJaA9DCHPbvkd9TXFAlIaUUpRoFUupaBZHQMdb58kt29t1fZQoaAZoCWgPQwjhCijUEz10QJSGlFKUaBVLr2gWR0DHW+tGXokidX2UKGgGaAloD0MIw/NSsbFCdECUhpRSlGgVS8VoFkdAx1v5UedTYXV9lChoBmgJaA9DCA+aXffWbm9AlIaUUpRoFUuPaBZHQMdcCjEm6Xl1fZQoaAZoCWgPQwjcnEoGgLBwQJSGlFKUaBVLpmgWR0DHXBlugpSadX2UKGgGaAloD0MIrthfdk8+c0CUhpRSlGgVS7VoFkdAx1wcsAeaKHV9lChoBmgJaA9DCPp9/+ZFG3BAlIaUUpRoFUuUaBZHQMdcJzmnwXt1fZQoaAZoCWgPQwiVDtb/uahyQJSGlFKUaBVLsWgWR0DHXCjZ39rHdX2UKGgGaAloD0MI2A+xwUJNckCUhpRSlGgVS7FoFkdAx1wouqWC3HV9lChoBmgJaA9DCCmWW1oN7XBAlIaUUpRoFUu1aBZHQMdcKMTFl051fZQoaAZoCWgPQwjb/L/qCJVyQJSGlFKUaBVLu2gWR0DHXCzDEWIodX2UKGgGaAloD0MIzgAXZItacUCUhpRSlGgVS6JoFkdAx1wup0fYBnV9lChoBmgJaA9DCOkQOBLocHNAlIaUUpRoFUvCaBZHQMdcL7TUiIN1fZQoaAZoCWgPQwh3+GuyRkNxQJSGlFKUaBVLoWgWR0DHXDFsUIszdX2UKGgGaAloD0MIcVga+NFoc0CUhpRSlGgVS7RoFkdAx1wxiDujRHV9lChoBmgJaA9DCHuGcMyytHJAlIaUUpRoFUu0aBZHQMdcNSdWhh91fZQoaAZoCWgPQwiRDDm23p1xQJSGlFKUaBVLrGgWR0DHXDZ8hLXddX2UKGgGaAloD0MIsoUgB6Uqc0CUhpRSlGgVS59oFkdAx1w7I6KceHV9lChoBmgJaA9DCH3O3a7Xi3JAlIaUUpRoFUumaBZHQMdcPL6k6911fZQoaAZoCWgPQwiL4H8rGZJxQJSGlFKUaBVLq2gWR0DHXEhyyUs4dX2UKGgGaAloD0MI++WTFUOLcECUhpRSlGgVS7hoFkdAx1xNN0NjLHV9lChoBmgJaA9DCPxTqkRZH3BAlIaUUpRoFUuSaBZHQMdcV8+7lJZ1fZQoaAZoCWgPQwjsNNJSuSp0QJSGlFKUaBVLsGgWR0DHXGE4zabndX2UKGgGaAloD0MICDvFqkEEcUCUhpRSlGgVS7FoFkdAx1xlTpgTiHV9lChoBmgJaA9DCD52FyhpfXNAlIaUUpRoFUuraBZHQMdcaHX/YJ51fZQoaAZoCWgPQwhVTKWfcJ1zQJSGlFKUaBVLumgWR0DHXGsXBP9DdX2UKGgGaAloD0MIC5jArfvnckCUhpRSlGgVS7loFkdAx1x3UrkKeHV9lChoBmgJaA9DCBx6i4f31nNAlIaUUpRoFUuiaBZHQMdchRDkU9J1fZQoaAZoCWgPQwgr3zMSIdNxQJSGlFKUaBVLs2gWR0DHXIpVp9JCdX2UKGgGaAloD0MIPggB+ZK2c0CUhpRSlGgVS7poFkdAx1yRdmg8KXV9lChoBmgJaA9DCLPsSWCz5HNAlIaUUpRoFUuraBZHQMdckR9gF5h1fZQoaAZoCWgPQwhv05/9SOlwQJSGlFKUaBVLumgWR0DHXJduBMBZdX2UKGgGaAloD0MIZysv+R8qcECUhpRSlGgVS6VoFkdAx1yc9QoCuHV9lChoBmgJaA9DCMWNW8yPk3JAlIaUUpRoFUvAaBZHQMdcqdAgPmR1fZQoaAZoCWgPQwiNQ/0u7EdwQJSGlFKUaBVLnGgWR0DHXLSi48U3dX2UKGgGaAloD0MIq+y7IvjMckCUhpRSlGgVS69oFkdAx1y4dH2AXnV9lChoBmgJaA9DCMU4fxMKXnNAlIaUUpRoFUuhaBZHQMdcvKn3ta91fZQoaAZoCWgPQwjsoBLX8Y5xQJSGlFKUaBVLnWgWR0DHXMP73wkPdX2UKGgGaAloD0MIlxqhnylVcECUhpRSlGgVS5poFkdAx1zGi8nNPnV9lChoBmgJaA9DCGUAqOIGIXNAlIaUUpRoFUuVaBZHQMdcx3cHnlp1fZQoaAZoCWgPQwiTrMPRFQNwQJSGlFKUaBVLp2gWR0DHXM3kgfU4dX2UKGgGaAloD0MI1ZP5R59icECUhpRSlGgVS6BoFkdAx1zNmlImPnV9lChoBmgJaA9DCN1e0hhtonJAlIaUUpRoFUuqaBZHQMdc1QMx46h1fZQoaAZoCWgPQwjb+BOVjaxwQJSGlFKUaBVLp2gWR0DHXNYe7tiQdX2UKGgGaAloD0MI626e6lBCc0CUhpRSlGgVS7RoFkdAx1zaOZLIxXV9lChoBmgJaA9DCBJPdjNjvHJAlIaUUpRoFUutaBZHQMdc3Gxlg+h1fZQoaAZoCWgPQwhy3ZTymqpwQJSGlFKUaBVLrmgWR0DHXOe8PFvRdX2UKGgGaAloD0MI/FQVGkhackCUhpRSlGgVS7NoFkdAx1znwy6+WXV9lChoBmgJaA9DCD+Ne/ObmHNAlIaUUpRoFUuuaBZHQMdc6bwz+FV1fZQoaAZoCWgPQwgx0/avrORwQJSGlFKUaBVLomgWR0DHXOsGkep5dX2UKGgGaAloD0MI6bmFroTvcUCUhpRSlGgVS8VoFkdAx1ztHuJDV3V9lChoBmgJaA9DCKvRqwGKEHJAlIaUUpRoFUuaaBZHQMddBPAO8TV1fZQoaAZoCWgPQwgB9zx/mkxzQJSGlFKUaBVLumgWR0DHXQZyCFsYdX2UKGgGaAloD0MImZ8bmrJbc0CUhpRSlGgVS6poFkdAx10LJ+2E03V9lChoBmgJaA9DCC9QUmDBsnNAlIaUUpRoFUuzaBZHQMddCr0rbxp1fZQoaAZoCWgPQwiKAKd3cZZzQJSGlFKUaBVLpWgWR0DHXQ14keIVdX2UKGgGaAloD0MIwvhp3Btvb0CUhpRSlGgVS5doFkdAx10PJFspHHV9lChoBmgJaA9DCMJR8uocAXJAlIaUUpRoFUutaBZHQMddEfms/6h1fZQoaAZoCWgPQwgHmPkOPvNxQJSGlFKUaBVLiGgWR0DHXR4L1EmZdX2UKGgGaAloD0MIQX42ch2ecECUhpRSlGgVS5NoFkdAx10i4KhL5HV9lChoBmgJaA9DCEqyDkcXjHFAlIaUUpRoFUutaBZHQMddPHEl3Ql1fZQoaAZoCWgPQwjyfXGpSslwQJSGlFKUaBVLtGgWR0DHXT0+FDfFdX2UKGgGaAloD0MIvTeGACBDcECUhpRSlGgVS6NoFkdAx10+eEIw/XV9lChoBmgJaA9DCJCg+DHmknJAlIaUUpRoFUu6aBZHQMddPmZmZmZ1fZQoaAZoCWgPQwjeAZ608JdwQJSGlFKUaBVLoWgWR0DHXUlijL0SdX2UKGgGaAloD0MIRZxOspUbcUCUhpRSlGgVS5doFkdAx11NXTVlPXV9lChoBmgJaA9DCA0a+ic4cXNAlIaUUpRoFUucaBZHQMddVp/oaDR1fZQoaAZoCWgPQwjKwAEtHS5xQJSGlFKUaBVLrGgWR0DHXV608eS0dX2UKGgGaAloD0MIj2/vGjSocECUhpRSlGgVS6VoFkdAx11n2+PBBXV9lChoBmgJaA9DCB0CRwKN+3JAlIaUUpRoFUukaBZHQMddaoOH3111fZQoaAZoCWgPQwi0q5DyEwdyQJSGlFKUaBVLqmgWR0DHXXd+b3GodX2UKGgGaAloD0MIEfxvJXsWdECUhpRSlGgVS6RoFkdAx114s9SuQ3V9lChoBmgJaA9DCJks7j8y3XFAlIaUUpRoFUuraBZHQMddeIQWepZ1fZQoaAZoCWgPQwjTaHIxBj5EQJSGlFKUaBVLVWgWR0DHXXqx5cC6dX2UKGgGaAloD0MI6SrdXaeKc0CUhpRSlGgVS6toFkdAx12FEpAlfXV9lChoBmgJaA9DCDRIwVPIknFAlIaUUpRoFUufaBZHQMddhkcbR4R1fZQoaAZoCWgPQwipiNNJNpJvQJSGlFKUaBVLpmgWR0DHXY0tI066dX2UKGgGaAloD0MIuOaO/peTckCUhpRSlGgVS7loFkdAx12PYcNpd3V9lChoBmgJaA9DCJ1oVyGlJ3RAlIaUUpRoFUupaBZHQMddlSmhufp1fZQoaAZoCWgPQwiuDoC463VwQJSGlFKUaBVLlGgWR0DHXZrvTgEVdX2UKGgGaAloD0MIcM0d/S8scUCUhpRSlGgVS5NoFkdAx12eDxLCenV9lChoBmgJaA9DCLWHvVDAUnFAlIaUUpRoFUvXaBZHQMddnY5ksjF1fZQoaAZoCWgPQwiV7q6zYfxzQJSGlFKUaBVLxGgWR0DHXZ+kBS1mdX2UKGgGaAloD0MIhJ84gP7cb0CUhpRSlGgVS6RoFkdAx12pvAoG6nV9lChoBmgJaA9DCN/7G7SXqXFAlIaUUpRoFUubaBZHQMddqTVc2R91fZQoaAZoCWgPQwga3NYWXg9zQJSGlFKUaBVLw2gWR0DHXaw593KTdX2UKGgGaAloD0MIUDdQ4N1wcECUhpRSlGgVS6hoFkdAx12z4fOlf3V9lChoBmgJaA9DCJIlcyzvOnBAlIaUUpRoFUugaBZHQMddsvykKu11fZQoaAZoCWgPQwgJ/Uy9LppwQJSGlFKUaBVLm2gWR0DHXbuj/MnrdX2UKGgGaAloD0MI+BkXDkR5dECUhpRSlGgVS9FoFkdAx127MBZIQXV9lChoBmgJaA9DCBn/PuNCNXNAlIaUUpRoFUuraBZHQMdduyP2f051ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2132, "n_steps": 1048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-try5.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98ea5edd6ce2433d1327623baa65adaea191951ec7705677f56263e17be272d3
|
3 |
+
size 144684
|
ppo-LunarLander-v2-try5/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2-try5/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f48c9758170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48c9758200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48c9758290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48c9758320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f48c97583b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f48c9758440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48c97584d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f48c9758560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48c97585f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48c9758680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48c9758710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f48c979bc30>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 16130816,
|
46 |
+
"_total_timesteps": 16100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652215644.508045,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAABc9zx+n7w/dr/gPZuRVb61CYU91k6uPQAAAAAAAAAAmnYvPS84GD7a4om+iwD+vjOonDyW0iG+AAAAAAAAAAD9aWO+weSIP1765b7nxRm/1Uj8vibCe74AAAAAAAAAAM3sb7saU54/Ju6CvJEIK7+Zz4m8SiwbvQAAAAAAAAAAmlFJO20ETz9mmDc8sCuCv9m/CrxiJxI8AAAAAAAAAACABzQ+BMwjPrnaEr9w3RG/tLWTPdyKwL4AAAAAAAAAAGZ6Cz3hApe6A0Squ6IojjyYr9O72zR3PQAAgD8AAIA/Gj8ZPfYtDT8+Nls8ZjNgv8PTtT3j/M48AAAAAAAAAAC2O1u+4KpyPyJz373BYhy/IvHpvtJnIr0AAAAAAAAAAJrzVr2P1ga6kNM3PlZW672vpx46u5OAvwAAAAAAAAAAjRSoPTtqrT/q+W8+1xMGv3ylgz5Gwew9AAAAAAAAAAA6DGC+xwJDP/a2TD18HBW/EZbqvpIN3j0AAAAAAAAAALqaMb4SVnI+3IcBP2SLIb/qjoy+mTm8PgAAAAAAAAAAAOTrux0/Kz5nkYM92aTkvvRS/Tzz8uA9AAAAAAAAAACAW209nOi6P/R0kD5bG7C9o8QaPuuwwD4AAAAAAAAAAGZYTDyPNnm6rrrsOk9S1zUdfcO6s4QKugAAgD8AAIA/W7+YvltZZz8i4wg+ZRgmvwhMF78mryY+AAAAAAAAAAAzi0y9C6CmP9UYQL6NnAO/aizgvfIK8b0AAAAAAAAAAAALpTxI44u6OCNCte8C+q52OTu7qodJNAAAgD8AAIA/psn3vXPe4z5WnBg+I9lKvxN+Pb74vSQ+AAAAAAAAAADzFXc+1M5gPxLWlTz6HTy/ZmEHPzKU270AAAAAAAAAALNBRb1cO166Og0CvGlXojZCA586wLATtgAAAAAAAIA/etMdPmhScz9gxW0+3LZOv6476D7u0cE8AAAAAAAAAACasMg8Rhy8P9M+AT4ZinS9jTlJPStS8D0AAAAAAAAAADMDuLo9zhm7DpMdvWs7sTw12FE8ddqXvQAAgD8AAIA/mmtXvXGauD3SI2c+AVTMvgPVGD1mRi8+AAAAAAAAAACagXi9lV4FP4XEaD3QV0q/i1spvhq6zzwAAAAAAAAAAEbWAb7lMIs/iFCivqreI79LtKK+G3MEvgAAAAAAAAAAZnA8vd+9pDwMfaE+meavvsvXzD2q0oM+AAAAAAAAAACAI/S9bU+BPrWTsD58hSe/LWRQvWmhgT4AAAAAAAAAAAA4L7whVrw980ncPZ11tr4EgEo9CN3pPQAAAAAAAAAAzabvPI8KUDvWt6y+bz5XvkY2RL4qcU4/AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.001914037267080726,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh6JAn0gkckCUhpRSlIwBbJRLv4wBdJRHQMdbtYe9zwN1fZQoaAZoCWgPQwh7vJAOT9NyQJSGlFKUaBVLq2gWR0DHW7gzDXOGdX2UKGgGaAloD0MI/7J78jC3cECUhpRSlGgVS6BoFkdAx1u/+T/yXnV9lChoBmgJaA9DCMyXF2DfzXFAlIaUUpRoFUuraBZHQMdbwXXAdn11fZQoaAZoCWgPQwjGwaVjDo1xQJSGlFKUaBVLwWgWR0DHW8djVhCudX2UKGgGaAloD0MIo5QQrGoMcUCUhpRSlGgVS5RoFkdAx1vYf6oES3V9lChoBmgJaA9DCCU/4lds+HFAlIaUUpRoFUvAaBZHQMdb2MH8jzJ1fZQoaAZoCWgPQwgkRPmCVshxQJSGlFKUaBVLpGgWR0DHW95mCiAUdX2UKGgGaAloD0MIj8ahftcIdECUhpRSlGgVS8loFkdAx1vlN7jT8nV9lChoBmgJaA9DCHPbvkd9TXFAlIaUUpRoFUupaBZHQMdb58kt29t1fZQoaAZoCWgPQwjhCijUEz10QJSGlFKUaBVLr2gWR0DHW+tGXokidX2UKGgGaAloD0MIw/NSsbFCdECUhpRSlGgVS8VoFkdAx1v5UedTYXV9lChoBmgJaA9DCA+aXffWbm9AlIaUUpRoFUuPaBZHQMdcCjEm6Xl1fZQoaAZoCWgPQwjcnEoGgLBwQJSGlFKUaBVLpmgWR0DHXBlugpSadX2UKGgGaAloD0MIrthfdk8+c0CUhpRSlGgVS7VoFkdAx1wcsAeaKHV9lChoBmgJaA9DCPp9/+ZFG3BAlIaUUpRoFUuUaBZHQMdcJzmnwXt1fZQoaAZoCWgPQwiVDtb/uahyQJSGlFKUaBVLsWgWR0DHXCjZ39rHdX2UKGgGaAloD0MI2A+xwUJNckCUhpRSlGgVS7FoFkdAx1wouqWC3HV9lChoBmgJaA9DCCmWW1oN7XBAlIaUUpRoFUu1aBZHQMdcKMTFl051fZQoaAZoCWgPQwjb/L/qCJVyQJSGlFKUaBVLu2gWR0DHXCzDEWIodX2UKGgGaAloD0MIzgAXZItacUCUhpRSlGgVS6JoFkdAx1wup0fYBnV9lChoBmgJaA9DCOkQOBLocHNAlIaUUpRoFUvCaBZHQMdcL7TUiIN1fZQoaAZoCWgPQwh3+GuyRkNxQJSGlFKUaBVLoWgWR0DHXDFsUIszdX2UKGgGaAloD0MIcVga+NFoc0CUhpRSlGgVS7RoFkdAx1wxiDujRHV9lChoBmgJaA9DCHuGcMyytHJAlIaUUpRoFUu0aBZHQMdcNSdWhh91fZQoaAZoCWgPQwiRDDm23p1xQJSGlFKUaBVLrGgWR0DHXDZ8hLXddX2UKGgGaAloD0MIsoUgB6Uqc0CUhpRSlGgVS59oFkdAx1w7I6KceHV9lChoBmgJaA9DCH3O3a7Xi3JAlIaUUpRoFUumaBZHQMdcPL6k6911fZQoaAZoCWgPQwiL4H8rGZJxQJSGlFKUaBVLq2gWR0DHXEhyyUs4dX2UKGgGaAloD0MI++WTFUOLcECUhpRSlGgVS7hoFkdAx1xNN0NjLHV9lChoBmgJaA9DCPxTqkRZH3BAlIaUUpRoFUuSaBZHQMdcV8+7lJZ1fZQoaAZoCWgPQwjsNNJSuSp0QJSGlFKUaBVLsGgWR0DHXGE4zabndX2UKGgGaAloD0MICDvFqkEEcUCUhpRSlGgVS7FoFkdAx1xlTpgTiHV9lChoBmgJaA9DCD52FyhpfXNAlIaUUpRoFUuraBZHQMdcaHX/YJ51fZQoaAZoCWgPQwhVTKWfcJ1zQJSGlFKUaBVLumgWR0DHXGsXBP9DdX2UKGgGaAloD0MIC5jArfvnckCUhpRSlGgVS7loFkdAx1x3UrkKeHV9lChoBmgJaA9DCBx6i4f31nNAlIaUUpRoFUuiaBZHQMdchRDkU9J1fZQoaAZoCWgPQwgr3zMSIdNxQJSGlFKUaBVLs2gWR0DHXIpVp9JCdX2UKGgGaAloD0MIPggB+ZK2c0CUhpRSlGgVS7poFkdAx1yRdmg8KXV9lChoBmgJaA9DCLPsSWCz5HNAlIaUUpRoFUuraBZHQMdckR9gF5h1fZQoaAZoCWgPQwhv05/9SOlwQJSGlFKUaBVLumgWR0DHXJduBMBZdX2UKGgGaAloD0MIZysv+R8qcECUhpRSlGgVS6VoFkdAx1yc9QoCuHV9lChoBmgJaA9DCMWNW8yPk3JAlIaUUpRoFUvAaBZHQMdcqdAgPmR1fZQoaAZoCWgPQwiNQ/0u7EdwQJSGlFKUaBVLnGgWR0DHXLSi48U3dX2UKGgGaAloD0MIq+y7IvjMckCUhpRSlGgVS69oFkdAx1y4dH2AXnV9lChoBmgJaA9DCMU4fxMKXnNAlIaUUpRoFUuhaBZHQMdcvKn3ta91fZQoaAZoCWgPQwjsoBLX8Y5xQJSGlFKUaBVLnWgWR0DHXMP73wkPdX2UKGgGaAloD0MIlxqhnylVcECUhpRSlGgVS5poFkdAx1zGi8nNPnV9lChoBmgJaA9DCGUAqOIGIXNAlIaUUpRoFUuVaBZHQMdcx3cHnlp1fZQoaAZoCWgPQwiTrMPRFQNwQJSGlFKUaBVLp2gWR0DHXM3kgfU4dX2UKGgGaAloD0MI1ZP5R59icECUhpRSlGgVS6BoFkdAx1zNmlImPnV9lChoBmgJaA9DCN1e0hhtonJAlIaUUpRoFUuqaBZHQMdc1QMx46h1fZQoaAZoCWgPQwjb+BOVjaxwQJSGlFKUaBVLp2gWR0DHXNYe7tiQdX2UKGgGaAloD0MI626e6lBCc0CUhpRSlGgVS7RoFkdAx1zaOZLIxXV9lChoBmgJaA9DCBJPdjNjvHJAlIaUUpRoFUutaBZHQMdc3Gxlg+h1fZQoaAZoCWgPQwhy3ZTymqpwQJSGlFKUaBVLrmgWR0DHXOe8PFvRdX2UKGgGaAloD0MI/FQVGkhackCUhpRSlGgVS7NoFkdAx1znwy6+WXV9lChoBmgJaA9DCD+Ne/ObmHNAlIaUUpRoFUuuaBZHQMdc6bwz+FV1fZQoaAZoCWgPQwgx0/avrORwQJSGlFKUaBVLomgWR0DHXOsGkep5dX2UKGgGaAloD0MI6bmFroTvcUCUhpRSlGgVS8VoFkdAx1ztHuJDV3V9lChoBmgJaA9DCKvRqwGKEHJAlIaUUpRoFUuaaBZHQMddBPAO8TV1fZQoaAZoCWgPQwgB9zx/mkxzQJSGlFKUaBVLumgWR0DHXQZyCFsYdX2UKGgGaAloD0MImZ8bmrJbc0CUhpRSlGgVS6poFkdAx10LJ+2E03V9lChoBmgJaA9DCC9QUmDBsnNAlIaUUpRoFUuzaBZHQMddCr0rbxp1fZQoaAZoCWgPQwiKAKd3cZZzQJSGlFKUaBVLpWgWR0DHXQ14keIVdX2UKGgGaAloD0MIwvhp3Btvb0CUhpRSlGgVS5doFkdAx10PJFspHHV9lChoBmgJaA9DCMJR8uocAXJAlIaUUpRoFUutaBZHQMddEfms/6h1fZQoaAZoCWgPQwgHmPkOPvNxQJSGlFKUaBVLiGgWR0DHXR4L1EmZdX2UKGgGaAloD0MIQX42ch2ecECUhpRSlGgVS5NoFkdAx10i4KhL5HV9lChoBmgJaA9DCEqyDkcXjHFAlIaUUpRoFUutaBZHQMddPHEl3Ql1fZQoaAZoCWgPQwjyfXGpSslwQJSGlFKUaBVLtGgWR0DHXT0+FDfFdX2UKGgGaAloD0MIvTeGACBDcECUhpRSlGgVS6NoFkdAx10+eEIw/XV9lChoBmgJaA9DCJCg+DHmknJAlIaUUpRoFUu6aBZHQMddPmZmZmZ1fZQoaAZoCWgPQwjeAZ608JdwQJSGlFKUaBVLoWgWR0DHXUlijL0SdX2UKGgGaAloD0MIRZxOspUbcUCUhpRSlGgVS5doFkdAx11NXTVlPXV9lChoBmgJaA9DCA0a+ic4cXNAlIaUUpRoFUucaBZHQMddVp/oaDR1fZQoaAZoCWgPQwjKwAEtHS5xQJSGlFKUaBVLrGgWR0DHXV608eS0dX2UKGgGaAloD0MIj2/vGjSocECUhpRSlGgVS6VoFkdAx11n2+PBBXV9lChoBmgJaA9DCB0CRwKN+3JAlIaUUpRoFUukaBZHQMddaoOH3111fZQoaAZoCWgPQwi0q5DyEwdyQJSGlFKUaBVLqmgWR0DHXXd+b3GodX2UKGgGaAloD0MIEfxvJXsWdECUhpRSlGgVS6RoFkdAx114s9SuQ3V9lChoBmgJaA9DCJks7j8y3XFAlIaUUpRoFUuraBZHQMddeIQWepZ1fZQoaAZoCWgPQwjTaHIxBj5EQJSGlFKUaBVLVWgWR0DHXXqx5cC6dX2UKGgGaAloD0MI6SrdXaeKc0CUhpRSlGgVS6toFkdAx12FEpAlfXV9lChoBmgJaA9DCDRIwVPIknFAlIaUUpRoFUufaBZHQMddhkcbR4R1fZQoaAZoCWgPQwipiNNJNpJvQJSGlFKUaBVLpmgWR0DHXY0tI066dX2UKGgGaAloD0MIuOaO/peTckCUhpRSlGgVS7loFkdAx12PYcNpd3V9lChoBmgJaA9DCJ1oVyGlJ3RAlIaUUpRoFUupaBZHQMddlSmhufp1fZQoaAZoCWgPQwiuDoC463VwQJSGlFKUaBVLlGgWR0DHXZrvTgEVdX2UKGgGaAloD0MIcM0d/S8scUCUhpRSlGgVS5NoFkdAx12eDxLCenV9lChoBmgJaA9DCLWHvVDAUnFAlIaUUpRoFUvXaBZHQMddnY5ksjF1fZQoaAZoCWgPQwiV7q6zYfxzQJSGlFKUaBVLxGgWR0DHXZ+kBS1mdX2UKGgGaAloD0MIhJ84gP7cb0CUhpRSlGgVS6RoFkdAx12pvAoG6nV9lChoBmgJaA9DCN/7G7SXqXFAlIaUUpRoFUubaBZHQMddqTVc2R91fZQoaAZoCWgPQwga3NYWXg9zQJSGlFKUaBVLw2gWR0DHXaw593KTdX2UKGgGaAloD0MIUDdQ4N1wcECUhpRSlGgVS6hoFkdAx12z4fOlf3V9lChoBmgJaA9DCJIlcyzvOnBAlIaUUpRoFUugaBZHQMddsvykKu11fZQoaAZoCWgPQwgJ/Uy9LppwQJSGlFKUaBVLm2gWR0DHXbuj/MnrdX2UKGgGaAloD0MI+BkXDkR5dECUhpRSlGgVS9FoFkdAx127MBZIQXV9lChoBmgJaA9DCBn/PuNCNXNAlIaUUpRoFUuraBZHQMdduyP2f051ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2132,
|
79 |
+
"n_steps": 1048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-try5/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:066001e6fd4f6fa1ca095d5695c93f9803f4cf78e399c961936208dd3f4f715b
|
3 |
+
size 84893
|
ppo-LunarLander-v2-try5/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5444c12ad1a56399506848e62c5a3b03157c74c7e0dac900a15935ffb9b82fda
|
3 |
+
size 43201
|
ppo-LunarLander-v2-try5/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-try5/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d22214388fd172a02328b1f7a44c08ce57c0a3f288bf7a4559ff3f4a9b9a1be
|
3 |
+
size 188336
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 299.8566765655877, "std_reward": 20.59590265585325, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T23:17:20.421813"}
|