Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-wei.zip +3 -0
- ppo-LunarLander-v2-wei/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-wei/data +99 -0
- ppo-LunarLander-v2-wei/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-wei/policy.pth +3 -0
- ppo-LunarLander-v2-wei/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-wei/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -215.68 +/- 111.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3766aa6ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3766aa6f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3766aa7010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3766aa70a0>", "_build": "<function ActorCriticPolicy._build at 0x7a3766aa7130>", "forward": "<function ActorCriticPolicy.forward at 0x7a3766aa71c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3766aa7250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3766aa72e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3766aa7370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3766aa7400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3766aa7490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3766aa7520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3766aacac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712105913161119994, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABneL3CV9k/0HRPvrlJmj6GAmk9o/E7PQAAAAAAAAAApixmPv2vjz/Ko0k/wr/YvmtPTb6/lKS9AAAAAAAAAADNBYA9H3VUPwSRpj3cQYG/D07NPQTQmz0AAAAAAAAAAGwbB7/ghUM/It1nvxVthr8KxB8/TU6IPgAAAAAAAAAACilevo7liz89NS+/xmAavwaWDL3mzpG9AAAAAAAAAAAAYBG9A0qlP9gyVb5CQ7i+xtT8Pe0nWT4AAAAAAAAAAIDfO72Ioa4/FLMqv2FewL5inGw9KDc1PgAAAAAAAAAA292jvm+LXj+GOGu/LRdWvwtxYT83bBk+AAAAAAAAAADNfmq8f9G8P0oH7bw3yCC9nKHsvWrqi74AAAAAAAAAANpjpL5nJhs/2ADsvufThL98vj09YmoCPgAAAAAAAAAAnvNNv7+4vL24JVi+NUjEvwIZML8TzJW+AACAPwAAAAANBf+9DVIAP5SApL70qJ2/IJbNPgKpNT4AAAAAAAAAAI0xvj16ouk+tMmbPnJ0o7/C+HG+jfBwvgAAAAAAAAAAQrgLP6z4uj7M5o8/UNjAv4IOqr9anVW+AAAAAAAAAAAzFbO8UxKwP0+FDL/nDs++MMy9PJxunj0AAAAAAAAAAG0hur5Qs5U+si4Nv4npnr9bMR0+zm6jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFZUha1TisKMAWyUS2qMAXSUR0ApcvQF9roGdX2UKGgGR8BtobhcZ9/jaAdLYGgIR0ApgY8dPtUodX2UKGgGR8Bjt5HCoCMhaAdLb2gIR0ApfwuuieundX2UKGgGR8BnCW8h9srNaAdLW2gIR0ApkUTtb9qDdX2UKGgGR8B6Y++L3sX0aAdLWGgIR0Apnme18b71dX2UKGgGR8BW2l1Oj7AMaAdLQmgIR0AppR5TqB3BdX2UKGgGR8Bg/09GI9DAaAdLP2gIR0Apv59E1EVndX2UKGgGR8BugDCgsbvPaAdLY2gIR0ApxRIjGDL9dX2UKGgGR8AwGbC79Q40aAdLQ2gIR0ApyWpIczZZdX2UKGgGR8BfuVtGd7OWaAdLTGgIR0ApzqJMxoIwdX2UKGgGR8BshSqn3ta7aAdLfmgIR0Ap1cAzYVZcdX2UKGgGR8BbzL9hqj8DaAdLQGgIR0Ap3HLA57w8dX2UKGgGR8BU9efRNRFaaAdLS2gIR0Ap6KoAGSpzdX2UKGgGR8B1ni1v2oNvaAdLX2gIR0AqBS8an753dX2UKGgGR8BmVKcurZJ1aAdLQ2gIR0AqBBAv+OwQdX2UKGgGR8BQ6tuUD+zdaAdLQGgIR0AqEcABDG96dX2UKGgGR8BveHL/0dzXaAdLUmgIR0AqIU2UB4lhdX2UKGgGR8BgpJcLSeAeaAdLX2gIR0AqKoUBXCCSdX2UKGgGR8BUNmX9itq6aAdLbGgIR0AqNHBDXvphdX2UKGgGR8BWPvMW43FUaAdLSmgIR0AqXoQFs54odX2UKGgGR8BI0QxnFo+OaAdLiWgIR0AqW/QjUutfdX2UKGgGR8BXJYLkS26TaAdLTGgIR0AqZ5i3G4qgdX2UKGgGR8Bp+lAE+xGEaAdLSmgIR0AqaoYNy5qedX2UKGgGR8BmHAA0bcXWaAdLd2gIR0AqjsSkCV8kdX2UKGgGR8BXmft2LYPHaAdLSWgIR0AqjMTviLl4dX2UKGgGR8B0O7vVmSQpaAdLXGgIR0Aqkw0waisXdX2UKGgGR8BduDp1RtP6aAdLf2gIR0AqmHyEtdzGdX2UKGgGR8B+LCdmQKa5aAdLbGgIR0AqmBOHnEEUdX2UKGgGR8BtGnVTaTOgaAdLa2gIR0Aqm1LJ0W/KdX2UKGgGR8B6AClMyrPuaAdLY2gIR0AqrLMcIZ62dX2UKGgGR8B3NmSZBsyjaAdLUGgIR0Aqxa6jFhoedX2UKGgGR8BYC/KhcqvvaAdLYGgIR0AqyjynUDuCdX2UKGgGR8Bbzfe1rqMWaAdLZ2gIR0Aqytuk1uR+dX2UKGgGR8B8I7j94u9OaAdLVmgIR0Aq2XQ+lj3FdX2UKGgGR8Ba2KLS/j82aAdLS2gIR0Aq+mJFb3XadX2UKGgGR8BV4bfxc3VDaAdLWWgIR0ArEyOaOPvKdX2UKGgGR8BjUEBltj0+aAdLRWgIR0ArEaLn9vS/dX2UKGgGR8BWj3U2DQJHaAdLTmgIR0ArJYcvM8oydX2UKGgGR8BQ/PLHMlkZaAdLb2gIR0ArMczZYgaFdX2UKGgGR8BmPMwYcebNaAdLQGgIR0ArRD1oQFs6dX2UKGgGR8BwtChew9q2aAdLn2gIR0ArVIbwSamXdX2UKGgGR8Bz5twGW2PUaAdLXmgIR0ArUfhddE9ddX2UKGgGR8BdlMu8K5TZaAdLZWgIR0ArXLHuJDVpdX2UKGgGR8BQmIKD0163aAdLhGgIR0ArYChew9q2dX2UKGgGR8BuSZeTmnwYaAdLbWgIR0ArZ8XN1QqJdX2UKGgGR8BhBSQ9zOopaAdLZGgIR0ArbWn0kGA1dX2UKGgGR8BwJvEQ5FPSaAdLZ2gIR0Arj6i0v4/NdX2UKGgGR8Bhqmukk8ifaAdLgGgIR0Arj2yLQ5WBdX2UKGgGR8BgN8b3oLXuaAdLQmgIR0ArlPIn0CiidX2UKGgGR8B82Qh8pkPMaAdLaGgIR0Arohxo7FKkdX2UKGgGR8Bxxc0+C9RKaAdLd2gIR0ArqV8CxNZedX2UKGgGR8BQBF0Lc9GJaAdLWWgIR0ArqBpYcNpedX2UKGgGR8BavHFLnLaFaAdLTmgIR0AruubI91U3dX2UKGgGR8BiXurdWQwLaAdLRGgIR0ArxQO4G2TgdX2UKGgGR8BXt+5J9RaYaAdLRmgIR0Ar05byH2ytdX2UKGgGR8BWurP+n62waAdLRmgIR0Ar4N6w+t8vdX2UKGgGR8BvlUHKOktVaAdLemgIR0Ar+PCl7+kydX2UKGgGR8BsWSsbNr0raAdLamgIR0Ar+lme18b8dX2UKGgGR8BlaEwaisXBaAdLPWgIR0AsBKtga3qidX2UKGgGR8Bnm1Pacqe9aAdLYGgIR0AsCCcPOIIodX2UKGgGR8B1PKRNh3JQaAdLVWgIR0AsBReC04R3dX2UKGgGR8BeWDY287IUaAdLSGgIR0AsE8wpON5udX2UKGgGR8BzlzC53C9AaAdLaWgIR0AsH1J17pmmdX2UKGgGR8B1owkIHC40aAdLZmgIR0AsKISlFc6edX2UKGgGR8BRnWTxG2CvaAdLSmgIR0AsKe4Cp3otdX2UKGgGR8BWX/VRUFSsaAdLQGgIR0AsOpDNQj2SdX2UKGgGR8Byv/0oScslaAdLZ2gIR0AsS6xxDLKWdX2UKGgGR8BTg0cOskpraAdLUWgIR0AsTruYx+KCdX2UKGgGR8BdAQmVqveQaAdLS2gIR0AsaMERradudX2UKGgGR8BYEFtj0+TvaAdLOmgIR0AsbExZdOZcdX2UKGgGR8BR593np0OmaAdLQ2gIR0AscfBeokzHdX2UKGgGR8BRmZamoBJaaAdLRGgIR0AsgRTS9du6dX2UKGgGR8BzZwc4o7V8aAdLeWgIR0AshNQj2SMcdX2UKGgGR8BobU4BFNL2aAdLemgIR0AshVlwtJ4CdX2UKGgGR8BnIJaNdZ7paAdLZGgIR0AsifJ3gUDddX2UKGgGR8B0nfJGOMl1aAdLVGgIR0Asklhw2l2vdX2UKGgGR8Ba1uDe0ojOaAdLRGgIR0Asmf029+PSdX2UKGgGR8BeJ7xI8QqaaAdLO2gIR0AspRIjGDL9dX2UKGgGR8B09dCAtnPFaAdLUWgIR0AspfgJkXk6dX2UKGgGR0AGiy8jAzpHaAdLSWgIR0As17pFCswMdX2UKGgGR0Ap+gW8AaNuaAdLXWgIR0As1nmq5sj3dX2UKGgGR8Bx98B4lhPTaAdLbGgIR0As8h9LHuJDdX2UKGgGR8BbhTQqqfe2aAdLgWgIR0As9TyauwHJdX2UKGgGR8Bo6kJv5xioaAdLY2gIR0AtB6JIlMRIdX2UKGgGR8B0t9og3cYZaAdLUGgIR0AtBq+rU9ZBdX2UKGgGR8BgxcrbxmTUaAdLWmgIR0AtHiH6/IsAdX2UKGgGR8BWUhV2icoZaAdLWGgIR0AtLhF3IMjNdX2UKGgGR8BX6zxPO6d2aAdLUmgIR0AtMM4LkS26dX2UKGgGR8BafDS9du50aAdLUGgIR0AtNLeQ+2VndX2UKGgGR8BnkVZ3cHnmaAdLXGgIR0AtNn3cpLEldX2UKGgGR8BoBqkZaV2SaAdLbmgIR0AtO717IDHPdX2UKGgGR8BriCcNH6MzaAdLcmgIR0AtZUkv9LpSdX2UKGgGR8Be9lLvkRzzaAdLUGgIR0AtcSbpeNT+dX2UKGgGR8BjOmMhouf3aAdLi2gIR0Ati7tiQT24dX2UKGgGR8BRvtqpLmITaAdLRmgIR0AtiygwoLG8dX2UKGgGR8BeGYj0L+glaAdLR2gIR0Atjm+0w8GLdX2UKGgGR8BdTgc94eLfaAdLaGgIR0AtnVvMr3CbdX2UKGgGR8Bp4jN4Z/CqaAdLgmgIR0AtoEB8x9G7dX2UKGgGR8BzeOjsUqQSaAdLaGgIR0Att6dlNDc/dX2UKGgGR8BWUyOearmyaAdLSWgIR0Atu580DU3GdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-wei.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e017d7637c72507f716e13a7058eb6eca09b176bbe2a17ac0f1c2fec1282741b
|
3 |
+
size 147931
|
ppo-LunarLander-v2-wei/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-wei/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a3766aa6ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3766aa6f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3766aa7010>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3766aa70a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a3766aa7130>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a3766aa71c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3766aa7250>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3766aa72e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a3766aa7370>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3766aa7400>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3766aa7490>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3766aa7520>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a3766aacac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 1000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1712105913161119994,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABneL3CV9k/0HRPvrlJmj6GAmk9o/E7PQAAAAAAAAAApixmPv2vjz/Ko0k/wr/YvmtPTb6/lKS9AAAAAAAAAADNBYA9H3VUPwSRpj3cQYG/D07NPQTQmz0AAAAAAAAAAGwbB7/ghUM/It1nvxVthr8KxB8/TU6IPgAAAAAAAAAACilevo7liz89NS+/xmAavwaWDL3mzpG9AAAAAAAAAAAAYBG9A0qlP9gyVb5CQ7i+xtT8Pe0nWT4AAAAAAAAAAIDfO72Ioa4/FLMqv2FewL5inGw9KDc1PgAAAAAAAAAA292jvm+LXj+GOGu/LRdWvwtxYT83bBk+AAAAAAAAAADNfmq8f9G8P0oH7bw3yCC9nKHsvWrqi74AAAAAAAAAANpjpL5nJhs/2ADsvufThL98vj09YmoCPgAAAAAAAAAAnvNNv7+4vL24JVi+NUjEvwIZML8TzJW+AACAPwAAAAANBf+9DVIAP5SApL70qJ2/IJbNPgKpNT4AAAAAAAAAAI0xvj16ouk+tMmbPnJ0o7/C+HG+jfBwvgAAAAAAAAAAQrgLP6z4uj7M5o8/UNjAv4IOqr9anVW+AAAAAAAAAAAzFbO8UxKwP0+FDL/nDs++MMy9PJxunj0AAAAAAAAAAG0hur5Qs5U+si4Nv4npnr9bMR0+zm6jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -15.384,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFZUha1TisKMAWyUS2qMAXSUR0ApcvQF9roGdX2UKGgGR8BtobhcZ9/jaAdLYGgIR0ApgY8dPtUodX2UKGgGR8Bjt5HCoCMhaAdLb2gIR0ApfwuuieundX2UKGgGR8BnCW8h9srNaAdLW2gIR0ApkUTtb9qDdX2UKGgGR8B6Y++L3sX0aAdLWGgIR0Apnme18b71dX2UKGgGR8BW2l1Oj7AMaAdLQmgIR0AppR5TqB3BdX2UKGgGR8Bg/09GI9DAaAdLP2gIR0Apv59E1EVndX2UKGgGR8BugDCgsbvPaAdLY2gIR0ApxRIjGDL9dX2UKGgGR8AwGbC79Q40aAdLQ2gIR0ApyWpIczZZdX2UKGgGR8BfuVtGd7OWaAdLTGgIR0ApzqJMxoIwdX2UKGgGR8BshSqn3ta7aAdLfmgIR0Ap1cAzYVZcdX2UKGgGR8BbzL9hqj8DaAdLQGgIR0Ap3HLA57w8dX2UKGgGR8BU9efRNRFaaAdLS2gIR0Ap6KoAGSpzdX2UKGgGR8B1ni1v2oNvaAdLX2gIR0AqBS8an753dX2UKGgGR8BmVKcurZJ1aAdLQ2gIR0AqBBAv+OwQdX2UKGgGR8BQ6tuUD+zdaAdLQGgIR0AqEcABDG96dX2UKGgGR8BveHL/0dzXaAdLUmgIR0AqIU2UB4lhdX2UKGgGR8BgpJcLSeAeaAdLX2gIR0AqKoUBXCCSdX2UKGgGR8BUNmX9itq6aAdLbGgIR0AqNHBDXvphdX2UKGgGR8BWPvMW43FUaAdLSmgIR0AqXoQFs54odX2UKGgGR8BI0QxnFo+OaAdLiWgIR0AqW/QjUutfdX2UKGgGR8BXJYLkS26TaAdLTGgIR0AqZ5i3G4qgdX2UKGgGR8Bp+lAE+xGEaAdLSmgIR0AqaoYNy5qedX2UKGgGR8BmHAA0bcXWaAdLd2gIR0AqjsSkCV8kdX2UKGgGR8BXmft2LYPHaAdLSWgIR0AqjMTviLl4dX2UKGgGR8B0O7vVmSQpaAdLXGgIR0Aqkw0waisXdX2UKGgGR8BduDp1RtP6aAdLf2gIR0AqmHyEtdzGdX2UKGgGR8B+LCdmQKa5aAdLbGgIR0AqmBOHnEEUdX2UKGgGR8BtGnVTaTOgaAdLa2gIR0Aqm1LJ0W/KdX2UKGgGR8B6AClMyrPuaAdLY2gIR0AqrLMcIZ62dX2UKGgGR8B3NmSZBsyjaAdLUGgIR0Aqxa6jFhoedX2UKGgGR8BYC/KhcqvvaAdLYGgIR0AqyjynUDuCdX2UKGgGR8Bbzfe1rqMWaAdLZ2gIR0Aqytuk1uR+dX2UKGgGR8B8I7j94u9OaAdLVmgIR0Aq2XQ+lj3FdX2UKGgGR8Ba2KLS/j82aAdLS2gIR0Aq+mJFb3XadX2UKGgGR8BV4bfxc3VDaAdLWWgIR0ArEyOaOPvKdX2UKGgGR8BjUEBltj0+aAdLRWgIR0ArEaLn9vS/dX2UKGgGR8BWj3U2DQJHaAdLTmgIR0ArJYcvM8oydX2UKGgGR8BQ/PLHMlkZaAdLb2gIR0ArMczZYgaFdX2UKGgGR8BmPMwYcebNaAdLQGgIR0ArRD1oQFs6dX2UKGgGR8BwtChew9q2aAdLn2gIR0ArVIbwSamXdX2UKGgGR8Bz5twGW2PUaAdLXmgIR0ArUfhddE9ddX2UKGgGR8BdlMu8K5TZaAdLZWgIR0ArXLHuJDVpdX2UKGgGR8BQmIKD0163aAdLhGgIR0ArYChew9q2dX2UKGgGR8BuSZeTmnwYaAdLbWgIR0ArZ8XN1QqJdX2UKGgGR8BhBSQ9zOopaAdLZGgIR0ArbWn0kGA1dX2UKGgGR8BwJvEQ5FPSaAdLZ2gIR0Arj6i0v4/NdX2UKGgGR8Bhqmukk8ifaAdLgGgIR0Arj2yLQ5WBdX2UKGgGR8BgN8b3oLXuaAdLQmgIR0ArlPIn0CiidX2UKGgGR8B82Qh8pkPMaAdLaGgIR0Arohxo7FKkdX2UKGgGR8Bxxc0+C9RKaAdLd2gIR0ArqV8CxNZedX2UKGgGR8BQBF0Lc9GJaAdLWWgIR0ArqBpYcNpedX2UKGgGR8BavHFLnLaFaAdLTmgIR0AruubI91U3dX2UKGgGR8BiXurdWQwLaAdLRGgIR0ArxQO4G2TgdX2UKGgGR8BXt+5J9RaYaAdLRmgIR0Ar05byH2ytdX2UKGgGR8BWurP+n62waAdLRmgIR0Ar4N6w+t8vdX2UKGgGR8BvlUHKOktVaAdLemgIR0Ar+PCl7+kydX2UKGgGR8BsWSsbNr0raAdLamgIR0Ar+lme18b8dX2UKGgGR8BlaEwaisXBaAdLPWgIR0AsBKtga3qidX2UKGgGR8Bnm1Pacqe9aAdLYGgIR0AsCCcPOIIodX2UKGgGR8B1PKRNh3JQaAdLVWgIR0AsBReC04R3dX2UKGgGR8BeWDY287IUaAdLSGgIR0AsE8wpON5udX2UKGgGR8BzlzC53C9AaAdLaWgIR0AsH1J17pmmdX2UKGgGR8B1owkIHC40aAdLZmgIR0AsKISlFc6edX2UKGgGR8BRnWTxG2CvaAdLSmgIR0AsKe4Cp3otdX2UKGgGR8BWX/VRUFSsaAdLQGgIR0AsOpDNQj2SdX2UKGgGR8Byv/0oScslaAdLZ2gIR0AsS6xxDLKWdX2UKGgGR8BTg0cOskpraAdLUWgIR0AsTruYx+KCdX2UKGgGR8BdAQmVqveQaAdLS2gIR0AsaMERradudX2UKGgGR8BYEFtj0+TvaAdLOmgIR0AsbExZdOZcdX2UKGgGR8BR593np0OmaAdLQ2gIR0AscfBeokzHdX2UKGgGR8BRmZamoBJaaAdLRGgIR0AsgRTS9du6dX2UKGgGR8BzZwc4o7V8aAdLeWgIR0AshNQj2SMcdX2UKGgGR8BobU4BFNL2aAdLemgIR0AshVlwtJ4CdX2UKGgGR8BnIJaNdZ7paAdLZGgIR0AsifJ3gUDddX2UKGgGR8B0nfJGOMl1aAdLVGgIR0Asklhw2l2vdX2UKGgGR8Ba1uDe0ojOaAdLRGgIR0Asmf029+PSdX2UKGgGR8BeJ7xI8QqaaAdLO2gIR0AspRIjGDL9dX2UKGgGR8B09dCAtnPFaAdLUWgIR0AspfgJkXk6dX2UKGgGR0AGiy8jAzpHaAdLSWgIR0As17pFCswMdX2UKGgGR0Ap+gW8AaNuaAdLXWgIR0As1nmq5sj3dX2UKGgGR8Bx98B4lhPTaAdLbGgIR0As8h9LHuJDdX2UKGgGR8BbhTQqqfe2aAdLgWgIR0As9TyauwHJdX2UKGgGR8Bo6kJv5xioaAdLY2gIR0AtB6JIlMRIdX2UKGgGR8B0t9og3cYZaAdLUGgIR0AtBq+rU9ZBdX2UKGgGR8BgxcrbxmTUaAdLWmgIR0AtHiH6/IsAdX2UKGgGR8BWUhV2icoZaAdLWGgIR0AtLhF3IMjNdX2UKGgGR8BX6zxPO6d2aAdLUmgIR0AtMM4LkS26dX2UKGgGR8BafDS9du50aAdLUGgIR0AtNLeQ+2VndX2UKGgGR8BnkVZ3cHnmaAdLXGgIR0AtNn3cpLEldX2UKGgGR8BoBqkZaV2SaAdLbmgIR0AtO717IDHPdX2UKGgGR8BriCcNH6MzaAdLcmgIR0AtZUkv9LpSdX2UKGgGR8Be9lLvkRzzaAdLUGgIR0AtcSbpeNT+dX2UKGgGR8BjOmMhouf3aAdLi2gIR0Ati7tiQT24dX2UKGgGR8BRvtqpLmITaAdLRmgIR0AtiygwoLG8dX2UKGgGR8BeGYj0L+glaAdLR2gIR0Atjm+0w8GLdX2UKGgGR8BdTgc94eLfaAdLaGgIR0AtnVvMr3CbdX2UKGgGR8Bp4jN4Z/CqaAdLgmgIR0AtoEB8x9G7dX2UKGgGR8BzeOjsUqQSaAdLaGgIR0Att6dlNDc/dX2UKGgGR8BWUyOearmyaAdLSWgIR0Atu580DU3GdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-wei/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:263a9237998302dd6eb1b8fccc423d96fd1063e4cb325f3dd7f45f1248c6720b
|
3 |
+
size 88362
|
ppo-LunarLander-v2-wei/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e24c05cac06e9dfd271134bb469a8da67c591cea79e3a767aa741e1842a0d73f
|
3 |
+
size 43762
|
ppo-LunarLander-v2-wei/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-wei/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (202 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -215.6815227848245, "std_reward": 111.20578934583452, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-03T01:02:00.510873"}
|