Floweii commited on
Commit
8658957
1 Parent(s): 1e43581

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -215.68 +/- 111.21
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3766aa6ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3766aa6f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3766aa7010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3766aa70a0>", "_build": "<function ActorCriticPolicy._build at 0x7a3766aa7130>", "forward": "<function ActorCriticPolicy.forward at 0x7a3766aa71c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3766aa7250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3766aa72e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3766aa7370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3766aa7400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3766aa7490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3766aa7520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3766aacac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712105913161119994, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABneL3CV9k/0HRPvrlJmj6GAmk9o/E7PQAAAAAAAAAApixmPv2vjz/Ko0k/wr/YvmtPTb6/lKS9AAAAAAAAAADNBYA9H3VUPwSRpj3cQYG/D07NPQTQmz0AAAAAAAAAAGwbB7/ghUM/It1nvxVthr8KxB8/TU6IPgAAAAAAAAAACilevo7liz89NS+/xmAavwaWDL3mzpG9AAAAAAAAAAAAYBG9A0qlP9gyVb5CQ7i+xtT8Pe0nWT4AAAAAAAAAAIDfO72Ioa4/FLMqv2FewL5inGw9KDc1PgAAAAAAAAAA292jvm+LXj+GOGu/LRdWvwtxYT83bBk+AAAAAAAAAADNfmq8f9G8P0oH7bw3yCC9nKHsvWrqi74AAAAAAAAAANpjpL5nJhs/2ADsvufThL98vj09YmoCPgAAAAAAAAAAnvNNv7+4vL24JVi+NUjEvwIZML8TzJW+AACAPwAAAAANBf+9DVIAP5SApL70qJ2/IJbNPgKpNT4AAAAAAAAAAI0xvj16ouk+tMmbPnJ0o7/C+HG+jfBwvgAAAAAAAAAAQrgLP6z4uj7M5o8/UNjAv4IOqr9anVW+AAAAAAAAAAAzFbO8UxKwP0+FDL/nDs++MMy9PJxunj0AAAAAAAAAAG0hur5Qs5U+si4Nv4npnr9bMR0+zm6jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFZUha1TisKMAWyUS2qMAXSUR0ApcvQF9roGdX2UKGgGR8BtobhcZ9/jaAdLYGgIR0ApgY8dPtUodX2UKGgGR8Bjt5HCoCMhaAdLb2gIR0ApfwuuieundX2UKGgGR8BnCW8h9srNaAdLW2gIR0ApkUTtb9qDdX2UKGgGR8B6Y++L3sX0aAdLWGgIR0Apnme18b71dX2UKGgGR8BW2l1Oj7AMaAdLQmgIR0AppR5TqB3BdX2UKGgGR8Bg/09GI9DAaAdLP2gIR0Apv59E1EVndX2UKGgGR8BugDCgsbvPaAdLY2gIR0ApxRIjGDL9dX2UKGgGR8AwGbC79Q40aAdLQ2gIR0ApyWpIczZZdX2UKGgGR8BfuVtGd7OWaAdLTGgIR0ApzqJMxoIwdX2UKGgGR8BshSqn3ta7aAdLfmgIR0Ap1cAzYVZcdX2UKGgGR8BbzL9hqj8DaAdLQGgIR0Ap3HLA57w8dX2UKGgGR8BU9efRNRFaaAdLS2gIR0Ap6KoAGSpzdX2UKGgGR8B1ni1v2oNvaAdLX2gIR0AqBS8an753dX2UKGgGR8BmVKcurZJ1aAdLQ2gIR0AqBBAv+OwQdX2UKGgGR8BQ6tuUD+zdaAdLQGgIR0AqEcABDG96dX2UKGgGR8BveHL/0dzXaAdLUmgIR0AqIU2UB4lhdX2UKGgGR8BgpJcLSeAeaAdLX2gIR0AqKoUBXCCSdX2UKGgGR8BUNmX9itq6aAdLbGgIR0AqNHBDXvphdX2UKGgGR8BWPvMW43FUaAdLSmgIR0AqXoQFs54odX2UKGgGR8BI0QxnFo+OaAdLiWgIR0AqW/QjUutfdX2UKGgGR8BXJYLkS26TaAdLTGgIR0AqZ5i3G4qgdX2UKGgGR8Bp+lAE+xGEaAdLSmgIR0AqaoYNy5qedX2UKGgGR8BmHAA0bcXWaAdLd2gIR0AqjsSkCV8kdX2UKGgGR8BXmft2LYPHaAdLSWgIR0AqjMTviLl4dX2UKGgGR8B0O7vVmSQpaAdLXGgIR0Aqkw0waisXdX2UKGgGR8BduDp1RtP6aAdLf2gIR0AqmHyEtdzGdX2UKGgGR8B+LCdmQKa5aAdLbGgIR0AqmBOHnEEUdX2UKGgGR8BtGnVTaTOgaAdLa2gIR0Aqm1LJ0W/KdX2UKGgGR8B6AClMyrPuaAdLY2gIR0AqrLMcIZ62dX2UKGgGR8B3NmSZBsyjaAdLUGgIR0Aqxa6jFhoedX2UKGgGR8BYC/KhcqvvaAdLYGgIR0AqyjynUDuCdX2UKGgGR8Bbzfe1rqMWaAdLZ2gIR0Aqytuk1uR+dX2UKGgGR8B8I7j94u9OaAdLVmgIR0Aq2XQ+lj3FdX2UKGgGR8Ba2KLS/j82aAdLS2gIR0Aq+mJFb3XadX2UKGgGR8BV4bfxc3VDaAdLWWgIR0ArEyOaOPvKdX2UKGgGR8BjUEBltj0+aAdLRWgIR0ArEaLn9vS/dX2UKGgGR8BWj3U2DQJHaAdLTmgIR0ArJYcvM8oydX2UKGgGR8BQ/PLHMlkZaAdLb2gIR0ArMczZYgaFdX2UKGgGR8BmPMwYcebNaAdLQGgIR0ArRD1oQFs6dX2UKGgGR8BwtChew9q2aAdLn2gIR0ArVIbwSamXdX2UKGgGR8Bz5twGW2PUaAdLXmgIR0ArUfhddE9ddX2UKGgGR8BdlMu8K5TZaAdLZWgIR0ArXLHuJDVpdX2UKGgGR8BQmIKD0163aAdLhGgIR0ArYChew9q2dX2UKGgGR8BuSZeTmnwYaAdLbWgIR0ArZ8XN1QqJdX2UKGgGR8BhBSQ9zOopaAdLZGgIR0ArbWn0kGA1dX2UKGgGR8BwJvEQ5FPSaAdLZ2gIR0Arj6i0v4/NdX2UKGgGR8Bhqmukk8ifaAdLgGgIR0Arj2yLQ5WBdX2UKGgGR8BgN8b3oLXuaAdLQmgIR0ArlPIn0CiidX2UKGgGR8B82Qh8pkPMaAdLaGgIR0Arohxo7FKkdX2UKGgGR8Bxxc0+C9RKaAdLd2gIR0ArqV8CxNZedX2UKGgGR8BQBF0Lc9GJaAdLWWgIR0ArqBpYcNpedX2UKGgGR8BavHFLnLaFaAdLTmgIR0AruubI91U3dX2UKGgGR8BiXurdWQwLaAdLRGgIR0ArxQO4G2TgdX2UKGgGR8BXt+5J9RaYaAdLRmgIR0Ar05byH2ytdX2UKGgGR8BWurP+n62waAdLRmgIR0Ar4N6w+t8vdX2UKGgGR8BvlUHKOktVaAdLemgIR0Ar+PCl7+kydX2UKGgGR8BsWSsbNr0raAdLamgIR0Ar+lme18b8dX2UKGgGR8BlaEwaisXBaAdLPWgIR0AsBKtga3qidX2UKGgGR8Bnm1Pacqe9aAdLYGgIR0AsCCcPOIIodX2UKGgGR8B1PKRNh3JQaAdLVWgIR0AsBReC04R3dX2UKGgGR8BeWDY287IUaAdLSGgIR0AsE8wpON5udX2UKGgGR8BzlzC53C9AaAdLaWgIR0AsH1J17pmmdX2UKGgGR8B1owkIHC40aAdLZmgIR0AsKISlFc6edX2UKGgGR8BRnWTxG2CvaAdLSmgIR0AsKe4Cp3otdX2UKGgGR8BWX/VRUFSsaAdLQGgIR0AsOpDNQj2SdX2UKGgGR8Byv/0oScslaAdLZ2gIR0AsS6xxDLKWdX2UKGgGR8BTg0cOskpraAdLUWgIR0AsTruYx+KCdX2UKGgGR8BdAQmVqveQaAdLS2gIR0AsaMERradudX2UKGgGR8BYEFtj0+TvaAdLOmgIR0AsbExZdOZcdX2UKGgGR8BR593np0OmaAdLQ2gIR0AscfBeokzHdX2UKGgGR8BRmZamoBJaaAdLRGgIR0AsgRTS9du6dX2UKGgGR8BzZwc4o7V8aAdLeWgIR0AshNQj2SMcdX2UKGgGR8BobU4BFNL2aAdLemgIR0AshVlwtJ4CdX2UKGgGR8BnIJaNdZ7paAdLZGgIR0AsifJ3gUDddX2UKGgGR8B0nfJGOMl1aAdLVGgIR0Asklhw2l2vdX2UKGgGR8Ba1uDe0ojOaAdLRGgIR0Asmf029+PSdX2UKGgGR8BeJ7xI8QqaaAdLO2gIR0AspRIjGDL9dX2UKGgGR8B09dCAtnPFaAdLUWgIR0AspfgJkXk6dX2UKGgGR0AGiy8jAzpHaAdLSWgIR0As17pFCswMdX2UKGgGR0Ap+gW8AaNuaAdLXWgIR0As1nmq5sj3dX2UKGgGR8Bx98B4lhPTaAdLbGgIR0As8h9LHuJDdX2UKGgGR8BbhTQqqfe2aAdLgWgIR0As9TyauwHJdX2UKGgGR8Bo6kJv5xioaAdLY2gIR0AtB6JIlMRIdX2UKGgGR8B0t9og3cYZaAdLUGgIR0AtBq+rU9ZBdX2UKGgGR8BgxcrbxmTUaAdLWmgIR0AtHiH6/IsAdX2UKGgGR8BWUhV2icoZaAdLWGgIR0AtLhF3IMjNdX2UKGgGR8BX6zxPO6d2aAdLUmgIR0AtMM4LkS26dX2UKGgGR8BafDS9du50aAdLUGgIR0AtNLeQ+2VndX2UKGgGR8BnkVZ3cHnmaAdLXGgIR0AtNn3cpLEldX2UKGgGR8BoBqkZaV2SaAdLbmgIR0AtO717IDHPdX2UKGgGR8BriCcNH6MzaAdLcmgIR0AtZUkv9LpSdX2UKGgGR8Be9lLvkRzzaAdLUGgIR0AtcSbpeNT+dX2UKGgGR8BjOmMhouf3aAdLi2gIR0Ati7tiQT24dX2UKGgGR8BRvtqpLmITaAdLRmgIR0AtiygwoLG8dX2UKGgGR8BeGYj0L+glaAdLR2gIR0Atjm+0w8GLdX2UKGgGR8BdTgc94eLfaAdLaGgIR0AtnVvMr3CbdX2UKGgGR8Bp4jN4Z/CqaAdLgmgIR0AtoEB8x9G7dX2UKGgGR8BzeOjsUqQSaAdLaGgIR0Att6dlNDc/dX2UKGgGR8BWUyOearmyaAdLSWgIR0Atu580DU3GdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-wei.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e017d7637c72507f716e13a7058eb6eca09b176bbe2a17ac0f1c2fec1282741b
3
+ size 147931
ppo-LunarLander-v2-wei/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-wei/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3766aa6ef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3766aa6f80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3766aa7010>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3766aa70a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a3766aa7130>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a3766aa71c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3766aa7250>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3766aa72e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a3766aa7370>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3766aa7400>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3766aa7490>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3766aa7520>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a3766aacac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 1000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1712105913161119994,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABneL3CV9k/0HRPvrlJmj6GAmk9o/E7PQAAAAAAAAAApixmPv2vjz/Ko0k/wr/YvmtPTb6/lKS9AAAAAAAAAADNBYA9H3VUPwSRpj3cQYG/D07NPQTQmz0AAAAAAAAAAGwbB7/ghUM/It1nvxVthr8KxB8/TU6IPgAAAAAAAAAACilevo7liz89NS+/xmAavwaWDL3mzpG9AAAAAAAAAAAAYBG9A0qlP9gyVb5CQ7i+xtT8Pe0nWT4AAAAAAAAAAIDfO72Ioa4/FLMqv2FewL5inGw9KDc1PgAAAAAAAAAA292jvm+LXj+GOGu/LRdWvwtxYT83bBk+AAAAAAAAAADNfmq8f9G8P0oH7bw3yCC9nKHsvWrqi74AAAAAAAAAANpjpL5nJhs/2ADsvufThL98vj09YmoCPgAAAAAAAAAAnvNNv7+4vL24JVi+NUjEvwIZML8TzJW+AACAPwAAAAANBf+9DVIAP5SApL70qJ2/IJbNPgKpNT4AAAAAAAAAAI0xvj16ouk+tMmbPnJ0o7/C+HG+jfBwvgAAAAAAAAAAQrgLP6z4uj7M5o8/UNjAv4IOqr9anVW+AAAAAAAAAAAzFbO8UxKwP0+FDL/nDs++MMy9PJxunj0AAAAAAAAAAG0hur5Qs5U+si4Nv4npnr9bMR0+zm6jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -15.384,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFZUha1TisKMAWyUS2qMAXSUR0ApcvQF9roGdX2UKGgGR8BtobhcZ9/jaAdLYGgIR0ApgY8dPtUodX2UKGgGR8Bjt5HCoCMhaAdLb2gIR0ApfwuuieundX2UKGgGR8BnCW8h9srNaAdLW2gIR0ApkUTtb9qDdX2UKGgGR8B6Y++L3sX0aAdLWGgIR0Apnme18b71dX2UKGgGR8BW2l1Oj7AMaAdLQmgIR0AppR5TqB3BdX2UKGgGR8Bg/09GI9DAaAdLP2gIR0Apv59E1EVndX2UKGgGR8BugDCgsbvPaAdLY2gIR0ApxRIjGDL9dX2UKGgGR8AwGbC79Q40aAdLQ2gIR0ApyWpIczZZdX2UKGgGR8BfuVtGd7OWaAdLTGgIR0ApzqJMxoIwdX2UKGgGR8BshSqn3ta7aAdLfmgIR0Ap1cAzYVZcdX2UKGgGR8BbzL9hqj8DaAdLQGgIR0Ap3HLA57w8dX2UKGgGR8BU9efRNRFaaAdLS2gIR0Ap6KoAGSpzdX2UKGgGR8B1ni1v2oNvaAdLX2gIR0AqBS8an753dX2UKGgGR8BmVKcurZJ1aAdLQ2gIR0AqBBAv+OwQdX2UKGgGR8BQ6tuUD+zdaAdLQGgIR0AqEcABDG96dX2UKGgGR8BveHL/0dzXaAdLUmgIR0AqIU2UB4lhdX2UKGgGR8BgpJcLSeAeaAdLX2gIR0AqKoUBXCCSdX2UKGgGR8BUNmX9itq6aAdLbGgIR0AqNHBDXvphdX2UKGgGR8BWPvMW43FUaAdLSmgIR0AqXoQFs54odX2UKGgGR8BI0QxnFo+OaAdLiWgIR0AqW/QjUutfdX2UKGgGR8BXJYLkS26TaAdLTGgIR0AqZ5i3G4qgdX2UKGgGR8Bp+lAE+xGEaAdLSmgIR0AqaoYNy5qedX2UKGgGR8BmHAA0bcXWaAdLd2gIR0AqjsSkCV8kdX2UKGgGR8BXmft2LYPHaAdLSWgIR0AqjMTviLl4dX2UKGgGR8B0O7vVmSQpaAdLXGgIR0Aqkw0waisXdX2UKGgGR8BduDp1RtP6aAdLf2gIR0AqmHyEtdzGdX2UKGgGR8B+LCdmQKa5aAdLbGgIR0AqmBOHnEEUdX2UKGgGR8BtGnVTaTOgaAdLa2gIR0Aqm1LJ0W/KdX2UKGgGR8B6AClMyrPuaAdLY2gIR0AqrLMcIZ62dX2UKGgGR8B3NmSZBsyjaAdLUGgIR0Aqxa6jFhoedX2UKGgGR8BYC/KhcqvvaAdLYGgIR0AqyjynUDuCdX2UKGgGR8Bbzfe1rqMWaAdLZ2gIR0Aqytuk1uR+dX2UKGgGR8B8I7j94u9OaAdLVmgIR0Aq2XQ+lj3FdX2UKGgGR8Ba2KLS/j82aAdLS2gIR0Aq+mJFb3XadX2UKGgGR8BV4bfxc3VDaAdLWWgIR0ArEyOaOPvKdX2UKGgGR8BjUEBltj0+aAdLRWgIR0ArEaLn9vS/dX2UKGgGR8BWj3U2DQJHaAdLTmgIR0ArJYcvM8oydX2UKGgGR8BQ/PLHMlkZaAdLb2gIR0ArMczZYgaFdX2UKGgGR8BmPMwYcebNaAdLQGgIR0ArRD1oQFs6dX2UKGgGR8BwtChew9q2aAdLn2gIR0ArVIbwSamXdX2UKGgGR8Bz5twGW2PUaAdLXmgIR0ArUfhddE9ddX2UKGgGR8BdlMu8K5TZaAdLZWgIR0ArXLHuJDVpdX2UKGgGR8BQmIKD0163aAdLhGgIR0ArYChew9q2dX2UKGgGR8BuSZeTmnwYaAdLbWgIR0ArZ8XN1QqJdX2UKGgGR8BhBSQ9zOopaAdLZGgIR0ArbWn0kGA1dX2UKGgGR8BwJvEQ5FPSaAdLZ2gIR0Arj6i0v4/NdX2UKGgGR8Bhqmukk8ifaAdLgGgIR0Arj2yLQ5WBdX2UKGgGR8BgN8b3oLXuaAdLQmgIR0ArlPIn0CiidX2UKGgGR8B82Qh8pkPMaAdLaGgIR0Arohxo7FKkdX2UKGgGR8Bxxc0+C9RKaAdLd2gIR0ArqV8CxNZedX2UKGgGR8BQBF0Lc9GJaAdLWWgIR0ArqBpYcNpedX2UKGgGR8BavHFLnLaFaAdLTmgIR0AruubI91U3dX2UKGgGR8BiXurdWQwLaAdLRGgIR0ArxQO4G2TgdX2UKGgGR8BXt+5J9RaYaAdLRmgIR0Ar05byH2ytdX2UKGgGR8BWurP+n62waAdLRmgIR0Ar4N6w+t8vdX2UKGgGR8BvlUHKOktVaAdLemgIR0Ar+PCl7+kydX2UKGgGR8BsWSsbNr0raAdLamgIR0Ar+lme18b8dX2UKGgGR8BlaEwaisXBaAdLPWgIR0AsBKtga3qidX2UKGgGR8Bnm1Pacqe9aAdLYGgIR0AsCCcPOIIodX2UKGgGR8B1PKRNh3JQaAdLVWgIR0AsBReC04R3dX2UKGgGR8BeWDY287IUaAdLSGgIR0AsE8wpON5udX2UKGgGR8BzlzC53C9AaAdLaWgIR0AsH1J17pmmdX2UKGgGR8B1owkIHC40aAdLZmgIR0AsKISlFc6edX2UKGgGR8BRnWTxG2CvaAdLSmgIR0AsKe4Cp3otdX2UKGgGR8BWX/VRUFSsaAdLQGgIR0AsOpDNQj2SdX2UKGgGR8Byv/0oScslaAdLZ2gIR0AsS6xxDLKWdX2UKGgGR8BTg0cOskpraAdLUWgIR0AsTruYx+KCdX2UKGgGR8BdAQmVqveQaAdLS2gIR0AsaMERradudX2UKGgGR8BYEFtj0+TvaAdLOmgIR0AsbExZdOZcdX2UKGgGR8BR593np0OmaAdLQ2gIR0AscfBeokzHdX2UKGgGR8BRmZamoBJaaAdLRGgIR0AsgRTS9du6dX2UKGgGR8BzZwc4o7V8aAdLeWgIR0AshNQj2SMcdX2UKGgGR8BobU4BFNL2aAdLemgIR0AshVlwtJ4CdX2UKGgGR8BnIJaNdZ7paAdLZGgIR0AsifJ3gUDddX2UKGgGR8B0nfJGOMl1aAdLVGgIR0Asklhw2l2vdX2UKGgGR8Ba1uDe0ojOaAdLRGgIR0Asmf029+PSdX2UKGgGR8BeJ7xI8QqaaAdLO2gIR0AspRIjGDL9dX2UKGgGR8B09dCAtnPFaAdLUWgIR0AspfgJkXk6dX2UKGgGR0AGiy8jAzpHaAdLSWgIR0As17pFCswMdX2UKGgGR0Ap+gW8AaNuaAdLXWgIR0As1nmq5sj3dX2UKGgGR8Bx98B4lhPTaAdLbGgIR0As8h9LHuJDdX2UKGgGR8BbhTQqqfe2aAdLgWgIR0As9TyauwHJdX2UKGgGR8Bo6kJv5xioaAdLY2gIR0AtB6JIlMRIdX2UKGgGR8B0t9og3cYZaAdLUGgIR0AtBq+rU9ZBdX2UKGgGR8BgxcrbxmTUaAdLWmgIR0AtHiH6/IsAdX2UKGgGR8BWUhV2icoZaAdLWGgIR0AtLhF3IMjNdX2UKGgGR8BX6zxPO6d2aAdLUmgIR0AtMM4LkS26dX2UKGgGR8BafDS9du50aAdLUGgIR0AtNLeQ+2VndX2UKGgGR8BnkVZ3cHnmaAdLXGgIR0AtNn3cpLEldX2UKGgGR8BoBqkZaV2SaAdLbmgIR0AtO717IDHPdX2UKGgGR8BriCcNH6MzaAdLcmgIR0AtZUkv9LpSdX2UKGgGR8Be9lLvkRzzaAdLUGgIR0AtcSbpeNT+dX2UKGgGR8BjOmMhouf3aAdLi2gIR0Ati7tiQT24dX2UKGgGR8BRvtqpLmITaAdLRmgIR0AtiygwoLG8dX2UKGgGR8BeGYj0L+glaAdLR2gIR0Atjm+0w8GLdX2UKGgGR8BdTgc94eLfaAdLaGgIR0AtnVvMr3CbdX2UKGgGR8Bp4jN4Z/CqaAdLgmgIR0AtoEB8x9G7dX2UKGgGR8BzeOjsUqQSaAdLaGgIR0Att6dlNDc/dX2UKGgGR8BWUyOearmyaAdLSWgIR0Atu580DU3GdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-wei/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:263a9237998302dd6eb1b8fccc423d96fd1063e4cb325f3dd7f45f1248c6720b
3
+ size 88362
ppo-LunarLander-v2-wei/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e24c05cac06e9dfd271134bb469a8da67c591cea79e3a767aa741e1842a0d73f
3
+ size 43762
ppo-LunarLander-v2-wei/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-wei/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (202 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -215.6815227848245, "std_reward": 111.20578934583452, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-03T01:02:00.510873"}