Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.74 +/- 0.16
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a795fee4a5c1afaa3a7633be443b5e481fa681b432e8fd713340a513650bba60
|
3 |
+
size 108044
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[ 1.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f94c2210550>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f94c220fc80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 200000,
|
23 |
+
"_total_timesteps": 200000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1682513776157365550,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVsKvPtUGvDqd2Q8/VsKvPtUGvDqd2Q8/VsKvPtUGvDqd2Q8/VsKvPtUGvDqd2Q8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtsuXPGdvs7/v1oU+HnywPyOkRD+ZAaQ/reg1PFecpj9ShBY//z2yPy7tgz+HCtY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQztWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQztWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQztWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.34327954 0.00143453 0.56191427]\n [0.34327954 0.00143453 0.56191427]\n [0.34327954 0.00143453 0.56191427]\n [0.34327954 0.00143453 0.56191427]]",
|
38 |
+
"desired_goal": "[[ 0.01852975 -1.4018372 0.26140544]\n [ 1.3787878 0.7681295 1.2812988 ]\n [ 0.01110284 1.3016461 0.58795655]\n [ 1.392517 1.0306756 1.6721963 ]]",
|
39 |
+
"observation": "[[ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]\n [ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]\n [ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]\n [ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWV8SPodxJb3t/wE+nR2aPTjk0r2qHy4+XmCsvAe/BL5OcSU+sk2GutGWTr2fZHQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.14294185 -0.04039147 0.12695284]\n [ 0.0752518 -0.10297436 0.17004266]\n [-0.02104205 -0.12963496 0.16156504]\n [-0.00102465 -0.0504368 0.23866509]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILxhcc0d/7b+UhpRSlIwBbJRLMowBdJRHQIFhZDZ13dN1fZQoaAZoCWgPQwilSSno9lLxv5SGlFKUaBVLMmgWR0CBYHaA4GUwdX2UKGgGaAloD0MIbw9CQL5E9b+UhpRSlGgVSzJoFkdAgV9rteD3/XV9lChoBmgJaA9DCMB7R40JsfC/lIaUUpRoFUsyaBZHQIFed0ihWYF1fZQoaAZoCWgPQwiXqN4a2Crsv5SGlFKUaBVLMmgWR0CBZV+Lm6oVdX2UKGgGaAloD0MIQ+OJIM7D8L+UhpRSlGgVSzJoFkdAgWRwazeGf3V9lChoBmgJaA9DCAirsYS1se+/lIaUUpRoFUsyaBZHQIFjZnL7oB91fZQoaAZoCWgPQwh9XYb/dAPuv5SGlFKUaBVLMmgWR0CBYnELH+6zdX2UKGgGaAloD0MIhV5/Ep878L+UhpRSlGgVSzJoFkdAgWkpCa7Va3V9lChoBmgJaA9DCKNWmL7XEOy/lIaUUpRoFUsyaBZHQIFoOkxh2GJ1fZQoaAZoCWgPQwhClgUTfxTrv5SGlFKUaBVLMmgWR0CBZzAC4jKQdX2UKGgGaAloD0MI3LsGfent87+UhpRSlGgVSzJoFkdAgWY7ZOBUaXV9lChoBmgJaA9DCKryPSMRGvC/lIaUUpRoFUsyaBZHQIFs0oWpIc11fZQoaAZoCWgPQwifPZepSTDwv5SGlFKUaBVLMmgWR0CBa+M0gr6MdX2UKGgGaAloD0MIebDFbp/V8r+UhpRSlGgVSzJoFkdAgWrYqXnhbXV9lChoBmgJaA9DCO5fWWlSSvK/lIaUUpRoFUsyaBZHQIFp44jrzGx1fZQoaAZoCWgPQwjyJr9FJwvxv5SGlFKUaBVLMmgWR0CBcHjwQUYbdX2UKGgGaAloD0MIvxBy3v9H7r+UhpRSlGgVSzJoFkdAgW+JxFRYR3V9lChoBmgJaA9DCApI+x9gLe6/lIaUUpRoFUsyaBZHQIFufhESdvt1fZQoaAZoCWgPQwg3UrZI2o3sv5SGlFKUaBVLMmgWR0CBbYjeKsMidX2UKGgGaAloD0MIYW73cp8c8L+UhpRSlGgVSzJoFkdAgXRSNXHR1HV9lChoBmgJaA9DCIs1XOSeLuy/lIaUUpRoFUsyaBZHQIFzY7zTWoZ1fZQoaAZoCWgPQwgknBa86Gvwv5SGlFKUaBVLMmgWR0CBcljurp7kdX2UKGgGaAloD0MIqU4Hsp5a7r+UhpRSlGgVSzJoFkdAgXFjurp7kXV9lChoBmgJaA9DCEiKyLCK9/K/lIaUUpRoFUsyaBZHQIF4C4e9zwN1fZQoaAZoCWgPQwgn9WVpp+bpv5SGlFKUaBVLMmgWR0CBdx0Cih38dX2UKGgGaAloD0MIKjqSy38I8b+UhpRSlGgVSzJoFkdAgXYSgPEsKHV9lChoBmgJaA9DCKSnyCHiZu2/lIaUUpRoFUsyaBZHQIF1HRmbsnl1fZQoaAZoCWgPQwiqukc2Vw3wv5SGlFKUaBVLMmgWR0CBfCDmr8zidX2UKGgGaAloD0MI7iWN0Trq8L+UhpRSlGgVSzJoFkdAgXsyOR1YAHV9lChoBmgJaA9DCIzc09Udi+u/lIaUUpRoFUsyaBZHQIF6Jx3mmtR1fZQoaAZoCWgPQwj18dB3tzLvv5SGlFKUaBVLMmgWR0CBeTTa0x/NdX2UKGgGaAloD0MI8rVnlgRo87+UhpRSlGgVSzJoFkdAgX/5QP7N0XV9lChoBmgJaA9DCGQfZFkwMfS/lIaUUpRoFUsyaBZHQIF/CkRBeHB1fZQoaAZoCWgPQwihLlIoC1/uv5SGlFKUaBVLMmgWR0CBff9lVcUudX2UKGgGaAloD0MIAMgJE0bz8b+UhpRSlGgVSzJoFkdAgX0KLjxTbXV9lChoBmgJaA9DCEqX/iWpDPC/lIaUUpRoFUsyaBZHQIGEVPrOZ9d1fZQoaAZoCWgPQwgz+tFwylzvv5SGlFKUaBVLMmgWR0CBg2k1Mue0dX2UKGgGaAloD0MIm+PcJtzr8b+UhpRSlGgVSzJoFkdAgYJgQxveg3V9lChoBmgJaA9DCF7VWS2wx/K/lIaUUpRoFUsyaBZHQIGBa9M9KVZ1fZQoaAZoCWgPQwhoWIy61h7xv5SGlFKUaBVLMmgWR0CBiAl2NedDdX2UKGgGaAloD0MIsYnMXOAy87+UhpRSlGgVSzJoFkdAgYcbE5yU93V9lChoBmgJaA9DCOhn6nWLAPe/lIaUUpRoFUsyaBZHQIGGEAJb+tN1fZQoaAZoCWgPQwjvb9Befbzyv5SGlFKUaBVLMmgWR0CBhRuMMqjKdX2UKGgGaAloD0MI9bwbCwqD8L+UhpRSlGgVSzJoFkdAgYv0HQhOg3V9lChoBmgJaA9DCKg2OBH9WvK/lIaUUpRoFUsyaBZHQIGLBgJC0F91fZQoaAZoCWgPQwidDflnBjHyv5SGlFKUaBVLMmgWR0CBifr56+nJdX2UKGgGaAloD0MIM9/BTxxA7b+UhpRSlGgVSzJoFkdAgYkHRLK3eHV9lChoBmgJaA9DCG+9pgcFpfG/lIaUUpRoFUsyaBZHQIGPvdoFmnR1fZQoaAZoCWgPQwg02NR5VLz0v5SGlFKUaBVLMmgWR0CBjtAj6eoUdX2UKGgGaAloD0MIVtP1RNdF9r+UhpRSlGgVSzJoFkdAgY3GM4tHx3V9lChoBmgJaA9DCNBk/zwNGPS/lIaUUpRoFUsyaBZHQIGM0TviLl51fZQoaAZoCWgPQwgEkUWaeEfwv5SGlFKUaBVLMmgWR0CBlczv7WNFdX2UKGgGaAloD0MIhXzQs1k18L+UhpRSlGgVSzJoFkdAgZTihvitJXV9lChoBmgJaA9DCKpIhbGFoPO/lIaUUpRoFUsyaBZHQIGT3AsTWXl1fZQoaAZoCWgPQwhNaJJYUu7rv5SGlFKUaBVLMmgWR0CBkulUIcBEdX2UKGgGaAloD0MIK2owDcNH8r+UhpRSlGgVSzJoFkdAgZv1C5VfeHV9lChoBmgJaA9DCALTad0GNfO/lIaUUpRoFUsyaBZHQIGbCH446wN1fZQoaAZoCWgPQwhfCaTEri3xv5SGlFKUaBVLMmgWR0CBmf+8XenAdX2UKGgGaAloD0MI1o13R8bq8L+UhpRSlGgVSzJoFkdAgZkMuvllsnV9lChoBmgJaA9DCHL9uz5zlvS/lIaUUpRoFUsyaBZHQIGiGpda+vh1fZQoaAZoCWgPQwg6d7temuLwv5SGlFKUaBVLMmgWR0CBoS5SWJJodX2UKGgGaAloD0MIN8KiIk5n9r+UhpRSlGgVSzJoFkdAgaAlkhA4XHV9lChoBmgJaA9DCMST3czoB/W/lIaUUpRoFUsyaBZHQIGfMsSTQmh1fZQoaAZoCWgPQwi5T44CRMHvv5SGlFKUaBVLMmgWR0CBqKSnLq2SdX2UKGgGaAloD0MIgczOonfq8b+UhpRSlGgVSzJoFkdAgae8bBGhEnV9lChoBmgJaA9DCPXXKyy4H/C/lIaUUpRoFUsyaBZHQIGms+5e7cx1fZQoaAZoCWgPQwhqSx3k9aDxv5SGlFKUaBVLMmgWR0CBpcGyHEdedX2UKGgGaAloD0MIo+VAD7Wt8r+UhpRSlGgVSzJoFkdAga9j7hvR7nV9lChoBmgJaA9DCMMtH0lJD/O/lIaUUpRoFUsyaBZHQIGud+I/JNl1fZQoaAZoCWgPQwgGaFvNOqPyv5SGlFKUaBVLMmgWR0CBrW/B3zMBdX2UKGgGaAloD0MIsaVHUz0Z87+UhpRSlGgVSzJoFkdAgax9Eb5uZXV9lChoBmgJaA9DCPCICtXNRfG/lIaUUpRoFUsyaBZHQIG150GNaQp1fZQoaAZoCWgPQwh5lEp4Qi/xv5SGlFKUaBVLMmgWR0CBtPxSYPXkdX2UKGgGaAloD0MIuB/wwAAC8b+UhpRSlGgVSzJoFkdAgbP0gB91EHV9lChoBmgJaA9DCPRNmgZF8+6/lIaUUpRoFUsyaBZHQIGzAoCuEEl1fZQoaAZoCWgPQwhn0qbqHpnyv5SGlFKUaBVLMmgWR0CBvF4cm0E6dX2UKGgGaAloD0MITI47pYM197+UhpRSlGgVSzJoFkdAgbtu5rgwXnV9lChoBmgJaA9DCLCQuTKotu2/lIaUUpRoFUsyaBZHQIG6ZDkU9IR1fZQoaAZoCWgPQwg91SE3w83xv5SGlFKUaBVLMmgWR0CBuW96C17ZdX2UKGgGaAloD0MI0zHnGftS8r+UhpRSlGgVSzJoFkdAgb/4vvjOs3V9lChoBmgJaA9DCF4PJsXHp/C/lIaUUpRoFUsyaBZHQIG/ClHjIaN1fZQoaAZoCWgPQwjnpzgOvFruv5SGlFKUaBVLMmgWR0CBvf81n/T9dX2UKGgGaAloD0MI+rZgqS5g87+UhpRSlGgVSzJoFkdAgb0J4rz5GnV9lChoBmgJaA9DCFmGONbFbfG/lIaUUpRoFUsyaBZHQIHD4znA6+51fZQoaAZoCWgPQwhJoMGmziPzv5SGlFKUaBVLMmgWR0CBwvSFXaJzdX2UKGgGaAloD0MISZ7r+3BQ9r+UhpRSlGgVSzJoFkdAgcHqDCgsb3V9lChoBmgJaA9DCD3xnC0gtPK/lIaUUpRoFUsyaBZHQIHA9U2kzoF1fZQoaAZoCWgPQwidgCbChmfzv5SGlFKUaBVLMmgWR0CBx7Ey+HrRdX2UKGgGaAloD0MIKNL9nIK887+UhpRSlGgVSzJoFkdAgcbDVx0dR3V9lChoBmgJaA9DCHtLOV/sPfS/lIaUUpRoFUsyaBZHQIHFuCI1tO51fZQoaAZoCWgPQwhHqu/8osTxv5SGlFKUaBVLMmgWR0CBxMLOzIFNdX2UKGgGaAloD0MIi+B/K9kx8L+UhpRSlGgVSzJoFkdAgct9/BnBcnV9lChoBmgJaA9DCML3/gbtVfC/lIaUUpRoFUsyaBZHQIHKkILPUrl1fZQoaAZoCWgPQwhSRIZVvBHyv5SGlFKUaBVLMmgWR0CByYWSEDhcdX2UKGgGaAloD0MIhjsXRnrR77+UhpRSlGgVSzJoFkdAgciQLVnVXnV9lChoBmgJaA9DCKn5KvnYnfG/lIaUUpRoFUsyaBZHQIHPNwDNhVl1fZQoaAZoCWgPQwhYcD/ggYHqv5SGlFKUaBVLMmgWR0CBzkfFrEcbdX2UKGgGaAloD0MI8b2/QXt19L+UhpRSlGgVSzJoFkdAgc08vduYQnV9lChoBmgJaA9DCAyx+iMMg+u/lIaUUpRoFUsyaBZHQIHMSF9KEnN1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 10000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:293a551f4ac540ff422976251e6895eeba001bfb993d3ac5b4138238680493e2
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edee1c75d5bb1122f53dd1b664aec6dfa05beef990f0bb9285608b80e4371f23
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd6e26043a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6e2605400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682458583508478096, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApVz7Pi8xwb2bbxA/pVz7Pi8xwb2bbxA/pVz7Pi8xwb2bbxA/pVz7Pi8xwb2bbxA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAt0+qP9erMD/MViA+9wi4P7gAtb9bO24+tEbCP0ro1z6vHyy/FU1jvp9nyT9vrra/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAClXPs+LzHBvZtvED9H6/q67lOTvExbMjylXPs+LzHBvZtvED9H6/q67lOTvExbMjylXPs+LzHBvZtvED9H6/q67lOTvExbMjylXPs+LzHBvZtvED9H6/q67lOTvExbMjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4909412 -0.09433209 0.56420296]\n [ 0.4909412 -0.09433209 0.56420296]\n [ 0.4909412 -0.09433209 0.56420296]\n [ 0.4909412 -0.09433209 0.56420296]]", "desired_goal": "[[ 1.3305577 0.69012207 0.1565811 ]\n [ 1.4377736 -1.4140844 0.2326483 ]\n [ 1.5177827 0.4216941 -0.67235845]\n [-0.22197373 1.5734748 -1.4271983 ]]", "observation": "[[ 0.4909412 -0.09433209 0.56420296 -0.00191436 -0.01798436 0.01088602]\n [ 0.4909412 -0.09433209 0.56420296 -0.00191436 -0.01798436 0.01088602]\n [ 0.4909412 -0.09433209 0.56420296 -0.00191436 -0.01798436 0.01088602]\n [ 0.4909412 -0.09433209 0.56420296 -0.00191436 -0.01798436 0.01088602]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoZhkvZcXwL2Qk2Y9LekPvomnzr2aiTg+EhK5vbSSJD0xxAI+7gkqPNyQn7ysCIY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05580962 -0.09379499 0.05629307]\n [-0.14053793 -0.10090549 0.18021241]\n [-0.0903665 0.04017897 0.12770154]\n [ 0.01037834 -0.01947825 0.06544623]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILv8h/fZxOMCUhpRSlIwBbJRLMowBdJRHQLJ0Yk4m1IB1fZQoaAZoCWgPQwjHKTqSy5clwJSGlFKUaBVLMmgWR0CydDkGeMAFdX2UKGgGaAloD0MIkE/IztsYHcCUhpRSlGgVSzJoFkdAsnQXNs3yZ3V9lChoBmgJaA9DCJ/KaU/JWSfAlIaUUpRoFUsyaBZHQLJz9u1WsBB1fZQoaAZoCWgPQwjecYqO5DIZwJSGlFKUaBVLMmgWR0CydOsdHUc5dX2UKGgGaAloD0MII9v5fmqMKcCUhpRSlGgVSzJoFkdAsnTB3qzJIXV9lChoBmgJaA9DCHrIlA9B2TfAlIaUUpRoFUsyaBZHQLJ0oEDyOJd1fZQoaAZoCWgPQwjLL4MxIgU5wJSGlFKUaBVLMmgWR0CydIAHE/B4dX2UKGgGaAloD0MIJ2w/GeNXNcCUhpRSlGgVSzJoFkdAsnV4lyBClnV9lChoBmgJaA9DCMa/z7hw0CDAlIaUUpRoFUsyaBZHQLJ1T1KGtZF1fZQoaAZoCWgPQwh4liAjoKozwJSGlFKUaBVLMmgWR0CydS2tuDSPdX2UKGgGaAloD0MIls6HZwlaIcCUhpRSlGgVSzJoFkdAsnUNZPl+3HV9lChoBmgJaA9DCM0FLo81fzfAlIaUUpRoFUsyaBZHQLJ2BmTTvy91fZQoaAZoCWgPQwhY/nxbsGQUwJSGlFKUaBVLMmgWR0Cydd0jPfKqdX2UKGgGaAloD0MIRrbz/dQEOMCUhpRSlGgVSzJoFkdAsnW7Z6D5CXV9lChoBmgJaA9DCK5/12fOVjTAlIaUUpRoFUsyaBZHQLJ1mzeXRgJ1fZQoaAZoCWgPQwiW6CyzCKUqwJSGlFKUaBVLMmgWR0CydppUT+NtdX2UKGgGaAloD0MIU1p/SwCeFsCUhpRSlGgVSzJoFkdAsnZxF1B+nnV9lChoBmgJaA9DCHzuBPuvezPAlIaUUpRoFUsyaBZHQLJ2T1QIldF1fZQoaAZoCWgPQwizYU1lUSg1wJSGlFKUaBVLMmgWR0Cydi8eCCjDdX2UKGgGaAloD0MI2GSNeogGHMCUhpRSlGgVSzJoFkdAsncyavzOHHV9lChoBmgJaA9DCGuCqPsAODzAlIaUUpRoFUsyaBZHQLJ3CVvMr3F1fZQoaAZoCWgPQwgJqHAEqVQ2wJSGlFKUaBVLMmgWR0CydugLNOdodX2UKGgGaAloD0MIsI14spuBNcCUhpRSlGgVSzJoFkdAsnbIbQ1JlXV9lChoBmgJaA9DCNRfr7DgFirAlIaUUpRoFUsyaBZHQLJ3wfXf6451fZQoaAZoCWgPQwgstklFYw00wJSGlFKUaBVLMmgWR0Cyd5i0KJEZdX2UKGgGaAloD0MIkdCWcyl6McCUhpRSlGgVSzJoFkdAsnd3D+BH1HV9lChoBmgJaA9DCK+T+rK0uyTAlIaUUpRoFUsyaBZHQLJ3VtCAtnR1fZQoaAZoCWgPQwhma32R0NI1wJSGlFKUaBVLMmgWR0CyeJjVtoBadX2UKGgGaAloD0MIYXE486upOsCUhpRSlGgVSzJoFkdAsnhwOd5IH3V9lChoBmgJaA9DCKAWg4dpfyvAlIaUUpRoFUsyaBZHQLJ4T3WnTAp1fZQoaAZoCWgPQwhybD1DOO40wJSGlFKUaBVLMmgWR0CyeC/ES/TLdX2UKGgGaAloD0MInBiSk4nbOcCUhpRSlGgVSzJoFkdAsnl7CXQdCHV9lChoBmgJaA9DCANf0a3XFB/AlIaUUpRoFUsyaBZHQLJ5Ul2vB8B1fZQoaAZoCWgPQwgglzjyQHwjwJSGlFKUaBVLMmgWR0CyeTDsdDIBdX2UKGgGaAloD0MI3+ALk6kmNMCUhpRSlGgVSzJoFkdAsnkQ/RmbsnV9lChoBmgJaA9DCBAjhEcbKzbAlIaUUpRoFUsyaBZHQLJ6bieumrN1fZQoaAZoCWgPQwjMfAc/cQATwJSGlFKUaBVLMmgWR0CyekUwi7kGdX2UKGgGaAloD0MIW3ufqkJDQMCUhpRSlGgVSzJoFkdAsnokBBAv+XV9lChoBmgJaA9DCFaCxeHMRyvAlIaUUpRoFUsyaBZHQLJ6BEAo5Px1fZQoaAZoCWgPQwhvumWH+EcVwJSGlFKUaBVLMmgWR0Cye3wTqSowdX2UKGgGaAloD0MIfNXKhF8CN8CUhpRSlGgVSzJoFkdAsntTNwBHTnV9lChoBmgJaA9DCNRDNLqDDDfAlIaUUpRoFUsyaBZHQLJ7MisGPgh1fZQoaAZoCWgPQwjHEAAce844wJSGlFKUaBVLMmgWR0CyexKSTyJ9dX2UKGgGaAloD0MIopqSrMPZP8CUhpRSlGgVSzJoFkdAsnx+YrrgO3V9lChoBmgJaA9DCN/F+3H7M0DAlIaUUpRoFUsyaBZHQLJ8VdJ8OTd1fZQoaAZoCWgPQwjGihpMw4AWwJSGlFKUaBVLMmgWR0CyfDRfF72MdX2UKGgGaAloD0MIw2UVNgMAOcCUhpRSlGgVSzJoFkdAsnwU0FbFCXV9lChoBmgJaA9DCLpOIy2VYzXAlIaUUpRoFUsyaBZHQLJ9gESdvsJ1fZQoaAZoCWgPQwhJEK6AQg0ZwJSGlFKUaBVLMmgWR0CyfVd3B55adX2UKGgGaAloD0MIQ3HHm/y6NsCUhpRSlGgVSzJoFkdAsn02JHiFTXV9lChoBmgJaA9DCGPS30vhAR3AlIaUUpRoFUsyaBZHQLJ9Fk1dgOV1fZQoaAZoCWgPQwhy3ZTyWpk/wJSGlFKUaBVLMmgWR0CyfjX2EkB0dX2UKGgGaAloD0MIfLWjOEexNMCUhpRSlGgVSzJoFkdAsn4M580DU3V9lChoBmgJaA9DCO6XT1YM/y/AlIaUUpRoFUsyaBZHQLJ9620Re1N1fZQoaAZoCWgPQwgvhnKiXZUlwJSGlFKUaBVLMmgWR0CyfctxdY4idX2UKGgGaAloD0MIP26/fLKyJMCUhpRSlGgVSzJoFkdAsn7ITK1XvHV9lChoBmgJaA9DCIoFvqJbs0DAlIaUUpRoFUsyaBZHQLJ+n0WdmQN1fZQoaAZoCWgPQwh5yf/k794UwJSGlFKUaBVLMmgWR0Cyfn2znieedX2UKGgGaAloD0MIRNsxdVfiMsCUhpRSlGgVSzJoFkdAsn5dfWtlqnV9lChoBmgJaA9DCEDDmzV4aUHAlIaUUpRoFUsyaBZHQLJ/ZirksBh1fZQoaAZoCWgPQwg8SiU8oZs0wJSGlFKUaBVLMmgWR0Cyfzz7IkqudX2UKGgGaAloD0MId554zhZANsCUhpRSlGgVSzJoFkdAsn8bPgNwznV9lChoBmgJaA9DCFQ57Sk5szXAlIaUUpRoFUsyaBZHQLJ++yZKFqV1fZQoaAZoCWgPQwhPPdLgtm4twJSGlFKUaBVLMmgWR0Cyf/7fcer/dX2UKGgGaAloD0MI0O6QYoDCQMCUhpRSlGgVSzJoFkdAsn/Vw84ginV9lChoBmgJaA9DCFngK7r1zjTAlIaUUpRoFUsyaBZHQLJ/tCU5dW11fZQoaAZoCWgPQwjmBG1y+Pg4wJSGlFKUaBVLMmgWR0Cyf5QPI4lydX2UKGgGaAloD0MIOC7jpgZuOsCUhpRSlGgVSzJoFkdAsoCZcOby6XV9lChoBmgJaA9DCGEb8WQ3nz/AlIaUUpRoFUsyaBZHQLKAcFpfx+d1fZQoaAZoCWgPQwjakH9mENM2wJSGlFKUaBVLMmgWR0CygE7DEWIodX2UKGgGaAloD0MIFJUNayrPMsCUhpRSlGgVSzJoFkdAsoAugi/wiXV9lChoBmgJaA9DCA/yejAp7iXAlIaUUpRoFUsyaBZHQLKBJo+wC8x1fZQoaAZoCWgPQwg+WpwxzG03wJSGlFKUaBVLMmgWR0CygP190A93dX2UKGgGaAloD0MIiV3b2y0pFMCUhpRSlGgVSzJoFkdAsoDb4DcM3XV9lChoBmgJaA9DCBdKJqd2rkHAlIaUUpRoFUsyaBZHQLKAu9AHE/B1fZQoaAZoCWgPQwjHgsKgTCtAwJSGlFKUaBVLMmgWR0CygcRh2GIsdX2UKGgGaAloD0MICU59IHmfMsCUhpRSlGgVSzJoFkdAsoGbU+cH4XV9lChoBmgJaA9DCKEvvf25aC7AlIaUUpRoFUsyaBZHQLKBeZU1hst1fZQoaAZoCWgPQwjPMLWlDiJDwJSGlFKUaBVLMmgWR0CygVmHLzPKdX2UKGgGaAloD0MISZ2AJsL6NsCUhpRSlGgVSzJoFkdAsoJYDhcZ+HV9lChoBmgJaA9DCNcXCW051y3AlIaUUpRoFUsyaBZHQLKCLsP8Q7N1fZQoaAZoCWgPQwgbguMybuIzwJSGlFKUaBVLMmgWR0Cygg0lZ5iWdX2UKGgGaAloD0MIT7D/OjfNFcCUhpRSlGgVSzJoFkdAsoHs+dK/VXV9lChoBmgJaA9DCOV8sffi8z/AlIaUUpRoFUsyaBZHQLKC5SmqHXV1fZQoaAZoCWgPQwie0sH6P3c2wJSGlFKUaBVLMmgWR0CygrwRK6FudX2UKGgGaAloD0MIlpaRek/hNMCUhpRSlGgVSzJoFkdAsoKaQ5myxHV9lChoBmgJaA9DCLQdU3dlhxfAlIaUUpRoFUsyaBZHQLKCegqVhTh1fZQoaAZoCWgPQwjUt8zpslA5wJSGlFKUaBVLMmgWR0Cyg3sRtgrpdX2UKGgGaAloD0MIPZgUH5/wIcCUhpRSlGgVSzJoFkdAsoNR0EHMU3V9lChoBmgJaA9DCPMd/MQBcDjAlIaUUpRoFUsyaBZHQLKDMArQPZt1fZQoaAZoCWgPQwjJrUm3Jf42wJSGlFKUaBVLMmgWR0CygxAH7gsLdX2UKGgGaAloD0MIUyXK3lKmKMCUhpRSlGgVSzJoFkdAsoQKRigCfnV9lChoBmgJaA9DCK65o//lFjXAlIaUUpRoFUsyaBZHQLKD4QpnYg91fZQoaAZoCWgPQwjC9pMxPtQrwJSGlFKUaBVLMmgWR0Cyg79k4FRpdX2UKGgGaAloD0MI71NVaCBiPMCUhpRSlGgVSzJoFkdAsoOfUsnRcHV9lChoBmgJaA9DCKd4XFSLqCXAlIaUUpRoFUsyaBZHQLKElguRLbp1fZQoaAZoCWgPQwjAXmHB/ZAUwJSGlFKUaBVLMmgWR0CyhGzviLl4dX2UKGgGaAloD0MIN4qsNZRwQMCUhpRSlGgVSzJoFkdAsoRLVRUFS3V9lChoBmgJaA9DCNxmKsQjxTXAlIaUUpRoFUsyaBZHQLKEKyhzvJB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f94c2210550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94c220fc80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682513776157365550, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVsKvPtUGvDqd2Q8/VsKvPtUGvDqd2Q8/VsKvPtUGvDqd2Q8/VsKvPtUGvDqd2Q8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtsuXPGdvs7/v1oU+HnywPyOkRD+ZAaQ/reg1PFecpj9ShBY//z2yPy7tgz+HCtY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQztWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQztWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQztWwq8+1Qa8Op3ZDz/52zO8rUF9utOkQzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.34327954 0.00143453 0.56191427]\n [0.34327954 0.00143453 0.56191427]\n [0.34327954 0.00143453 0.56191427]\n [0.34327954 0.00143453 0.56191427]]", "desired_goal": "[[ 0.01852975 -1.4018372 0.26140544]\n [ 1.3787878 0.7681295 1.2812988 ]\n [ 0.01110284 1.3016461 0.58795655]\n [ 1.392517 1.0306756 1.6721963 ]]", "observation": "[[ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]\n [ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]\n [ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]\n [ 0.34327954 0.00143453 0.56191427 -0.01097774 -0.0009661 0.00298529]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWV8SPodxJb3t/wE+nR2aPTjk0r2qHy4+XmCsvAe/BL5OcSU+sk2GutGWTr2fZHQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14294185 -0.04039147 0.12695284]\n [ 0.0752518 -0.10297436 0.17004266]\n [-0.02104205 -0.12963496 0.16156504]\n [-0.00102465 -0.0504368 0.23866509]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILxhcc0d/7b+UhpRSlIwBbJRLMowBdJRHQIFhZDZ13dN1fZQoaAZoCWgPQwilSSno9lLxv5SGlFKUaBVLMmgWR0CBYHaA4GUwdX2UKGgGaAloD0MIbw9CQL5E9b+UhpRSlGgVSzJoFkdAgV9rteD3/XV9lChoBmgJaA9DCMB7R40JsfC/lIaUUpRoFUsyaBZHQIFed0ihWYF1fZQoaAZoCWgPQwiXqN4a2Crsv5SGlFKUaBVLMmgWR0CBZV+Lm6oVdX2UKGgGaAloD0MIQ+OJIM7D8L+UhpRSlGgVSzJoFkdAgWRwazeGf3V9lChoBmgJaA9DCAirsYS1se+/lIaUUpRoFUsyaBZHQIFjZnL7oB91fZQoaAZoCWgPQwh9XYb/dAPuv5SGlFKUaBVLMmgWR0CBYnELH+6zdX2UKGgGaAloD0MIhV5/Ep878L+UhpRSlGgVSzJoFkdAgWkpCa7Va3V9lChoBmgJaA9DCKNWmL7XEOy/lIaUUpRoFUsyaBZHQIFoOkxh2GJ1fZQoaAZoCWgPQwhClgUTfxTrv5SGlFKUaBVLMmgWR0CBZzAC4jKQdX2UKGgGaAloD0MI3LsGfent87+UhpRSlGgVSzJoFkdAgWY7ZOBUaXV9lChoBmgJaA9DCKryPSMRGvC/lIaUUpRoFUsyaBZHQIFs0oWpIc11fZQoaAZoCWgPQwifPZepSTDwv5SGlFKUaBVLMmgWR0CBa+M0gr6MdX2UKGgGaAloD0MIebDFbp/V8r+UhpRSlGgVSzJoFkdAgWrYqXnhbXV9lChoBmgJaA9DCO5fWWlSSvK/lIaUUpRoFUsyaBZHQIFp44jrzGx1fZQoaAZoCWgPQwjyJr9FJwvxv5SGlFKUaBVLMmgWR0CBcHjwQUYbdX2UKGgGaAloD0MIvxBy3v9H7r+UhpRSlGgVSzJoFkdAgW+JxFRYR3V9lChoBmgJaA9DCApI+x9gLe6/lIaUUpRoFUsyaBZHQIFufhESdvt1fZQoaAZoCWgPQwg3UrZI2o3sv5SGlFKUaBVLMmgWR0CBbYjeKsMidX2UKGgGaAloD0MIYW73cp8c8L+UhpRSlGgVSzJoFkdAgXRSNXHR1HV9lChoBmgJaA9DCIs1XOSeLuy/lIaUUpRoFUsyaBZHQIFzY7zTWoZ1fZQoaAZoCWgPQwgknBa86Gvwv5SGlFKUaBVLMmgWR0CBcljurp7kdX2UKGgGaAloD0MIqU4Hsp5a7r+UhpRSlGgVSzJoFkdAgXFjurp7kXV9lChoBmgJaA9DCEiKyLCK9/K/lIaUUpRoFUsyaBZHQIF4C4e9zwN1fZQoaAZoCWgPQwgn9WVpp+bpv5SGlFKUaBVLMmgWR0CBdx0Cih38dX2UKGgGaAloD0MIKjqSy38I8b+UhpRSlGgVSzJoFkdAgXYSgPEsKHV9lChoBmgJaA9DCKSnyCHiZu2/lIaUUpRoFUsyaBZHQIF1HRmbsnl1fZQoaAZoCWgPQwiqukc2Vw3wv5SGlFKUaBVLMmgWR0CBfCDmr8zidX2UKGgGaAloD0MI7iWN0Trq8L+UhpRSlGgVSzJoFkdAgXsyOR1YAHV9lChoBmgJaA9DCIzc09Udi+u/lIaUUpRoFUsyaBZHQIF6Jx3mmtR1fZQoaAZoCWgPQwj18dB3tzLvv5SGlFKUaBVLMmgWR0CBeTTa0x/NdX2UKGgGaAloD0MI8rVnlgRo87+UhpRSlGgVSzJoFkdAgX/5QP7N0XV9lChoBmgJaA9DCGQfZFkwMfS/lIaUUpRoFUsyaBZHQIF/CkRBeHB1fZQoaAZoCWgPQwihLlIoC1/uv5SGlFKUaBVLMmgWR0CBff9lVcUudX2UKGgGaAloD0MIAMgJE0bz8b+UhpRSlGgVSzJoFkdAgX0KLjxTbXV9lChoBmgJaA9DCEqX/iWpDPC/lIaUUpRoFUsyaBZHQIGEVPrOZ9d1fZQoaAZoCWgPQwgz+tFwylzvv5SGlFKUaBVLMmgWR0CBg2k1Mue0dX2UKGgGaAloD0MIm+PcJtzr8b+UhpRSlGgVSzJoFkdAgYJgQxveg3V9lChoBmgJaA9DCF7VWS2wx/K/lIaUUpRoFUsyaBZHQIGBa9M9KVZ1fZQoaAZoCWgPQwhoWIy61h7xv5SGlFKUaBVLMmgWR0CBiAl2NedDdX2UKGgGaAloD0MIsYnMXOAy87+UhpRSlGgVSzJoFkdAgYcbE5yU93V9lChoBmgJaA9DCOhn6nWLAPe/lIaUUpRoFUsyaBZHQIGGEAJb+tN1fZQoaAZoCWgPQwjvb9Befbzyv5SGlFKUaBVLMmgWR0CBhRuMMqjKdX2UKGgGaAloD0MI9bwbCwqD8L+UhpRSlGgVSzJoFkdAgYv0HQhOg3V9lChoBmgJaA9DCKg2OBH9WvK/lIaUUpRoFUsyaBZHQIGLBgJC0F91fZQoaAZoCWgPQwidDflnBjHyv5SGlFKUaBVLMmgWR0CBifr56+nJdX2UKGgGaAloD0MIM9/BTxxA7b+UhpRSlGgVSzJoFkdAgYkHRLK3eHV9lChoBmgJaA9DCG+9pgcFpfG/lIaUUpRoFUsyaBZHQIGPvdoFmnR1fZQoaAZoCWgPQwg02NR5VLz0v5SGlFKUaBVLMmgWR0CBjtAj6eoUdX2UKGgGaAloD0MIVtP1RNdF9r+UhpRSlGgVSzJoFkdAgY3GM4tHx3V9lChoBmgJaA9DCNBk/zwNGPS/lIaUUpRoFUsyaBZHQIGM0TviLl51fZQoaAZoCWgPQwgEkUWaeEfwv5SGlFKUaBVLMmgWR0CBlczv7WNFdX2UKGgGaAloD0MIhXzQs1k18L+UhpRSlGgVSzJoFkdAgZTihvitJXV9lChoBmgJaA9DCKpIhbGFoPO/lIaUUpRoFUsyaBZHQIGT3AsTWXl1fZQoaAZoCWgPQwhNaJJYUu7rv5SGlFKUaBVLMmgWR0CBkulUIcBEdX2UKGgGaAloD0MIK2owDcNH8r+UhpRSlGgVSzJoFkdAgZv1C5VfeHV9lChoBmgJaA9DCALTad0GNfO/lIaUUpRoFUsyaBZHQIGbCH446wN1fZQoaAZoCWgPQwhfCaTEri3xv5SGlFKUaBVLMmgWR0CBmf+8XenAdX2UKGgGaAloD0MI1o13R8bq8L+UhpRSlGgVSzJoFkdAgZkMuvllsnV9lChoBmgJaA9DCHL9uz5zlvS/lIaUUpRoFUsyaBZHQIGiGpda+vh1fZQoaAZoCWgPQwg6d7temuLwv5SGlFKUaBVLMmgWR0CBoS5SWJJodX2UKGgGaAloD0MIN8KiIk5n9r+UhpRSlGgVSzJoFkdAgaAlkhA4XHV9lChoBmgJaA9DCMST3czoB/W/lIaUUpRoFUsyaBZHQIGfMsSTQmh1fZQoaAZoCWgPQwi5T44CRMHvv5SGlFKUaBVLMmgWR0CBqKSnLq2SdX2UKGgGaAloD0MIgczOonfq8b+UhpRSlGgVSzJoFkdAgae8bBGhEnV9lChoBmgJaA9DCPXXKyy4H/C/lIaUUpRoFUsyaBZHQIGms+5e7cx1fZQoaAZoCWgPQwhqSx3k9aDxv5SGlFKUaBVLMmgWR0CBpcGyHEdedX2UKGgGaAloD0MIo+VAD7Wt8r+UhpRSlGgVSzJoFkdAga9j7hvR7nV9lChoBmgJaA9DCMMtH0lJD/O/lIaUUpRoFUsyaBZHQIGud+I/JNl1fZQoaAZoCWgPQwgGaFvNOqPyv5SGlFKUaBVLMmgWR0CBrW/B3zMBdX2UKGgGaAloD0MIsaVHUz0Z87+UhpRSlGgVSzJoFkdAgax9Eb5uZXV9lChoBmgJaA9DCPCICtXNRfG/lIaUUpRoFUsyaBZHQIG150GNaQp1fZQoaAZoCWgPQwh5lEp4Qi/xv5SGlFKUaBVLMmgWR0CBtPxSYPXkdX2UKGgGaAloD0MIuB/wwAAC8b+UhpRSlGgVSzJoFkdAgbP0gB91EHV9lChoBmgJaA9DCPRNmgZF8+6/lIaUUpRoFUsyaBZHQIGzAoCuEEl1fZQoaAZoCWgPQwhn0qbqHpnyv5SGlFKUaBVLMmgWR0CBvF4cm0E6dX2UKGgGaAloD0MITI47pYM197+UhpRSlGgVSzJoFkdAgbtu5rgwXnV9lChoBmgJaA9DCLCQuTKotu2/lIaUUpRoFUsyaBZHQIG6ZDkU9IR1fZQoaAZoCWgPQwg91SE3w83xv5SGlFKUaBVLMmgWR0CBuW96C17ZdX2UKGgGaAloD0MI0zHnGftS8r+UhpRSlGgVSzJoFkdAgb/4vvjOs3V9lChoBmgJaA9DCF4PJsXHp/C/lIaUUpRoFUsyaBZHQIG/ClHjIaN1fZQoaAZoCWgPQwjnpzgOvFruv5SGlFKUaBVLMmgWR0CBvf81n/T9dX2UKGgGaAloD0MI+rZgqS5g87+UhpRSlGgVSzJoFkdAgb0J4rz5GnV9lChoBmgJaA9DCFmGONbFbfG/lIaUUpRoFUsyaBZHQIHD4znA6+51fZQoaAZoCWgPQwhJoMGmziPzv5SGlFKUaBVLMmgWR0CBwvSFXaJzdX2UKGgGaAloD0MISZ7r+3BQ9r+UhpRSlGgVSzJoFkdAgcHqDCgsb3V9lChoBmgJaA9DCD3xnC0gtPK/lIaUUpRoFUsyaBZHQIHA9U2kzoF1fZQoaAZoCWgPQwidgCbChmfzv5SGlFKUaBVLMmgWR0CBx7Ey+HrRdX2UKGgGaAloD0MIKNL9nIK887+UhpRSlGgVSzJoFkdAgcbDVx0dR3V9lChoBmgJaA9DCHtLOV/sPfS/lIaUUpRoFUsyaBZHQIHFuCI1tO51fZQoaAZoCWgPQwhHqu/8osTxv5SGlFKUaBVLMmgWR0CBxMLOzIFNdX2UKGgGaAloD0MIi+B/K9kx8L+UhpRSlGgVSzJoFkdAgct9/BnBcnV9lChoBmgJaA9DCML3/gbtVfC/lIaUUpRoFUsyaBZHQIHKkILPUrl1fZQoaAZoCWgPQwhSRIZVvBHyv5SGlFKUaBVLMmgWR0CByYWSEDhcdX2UKGgGaAloD0MIhjsXRnrR77+UhpRSlGgVSzJoFkdAgciQLVnVXnV9lChoBmgJaA9DCKn5KvnYnfG/lIaUUpRoFUsyaBZHQIHPNwDNhVl1fZQoaAZoCWgPQwhYcD/ggYHqv5SGlFKUaBVLMmgWR0CBzkfFrEcbdX2UKGgGaAloD0MI8b2/QXt19L+UhpRSlGgVSzJoFkdAgc08vduYQnV9lChoBmgJaA9DCAyx+iMMg+u/lIaUUpRoFUsyaBZHQIHMSF9KEnN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.7416424256633036, "std_reward": 0.1586348992660951, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T13:05:42.173882"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df31eb86bb607d4407e26eef1579a0870a351cee2d1117899ae93a849ac20247
|
3 |
size 2381
|