a2c-AntBulletEnv-v0 / config.json
Flooow's picture
Initial commit
b88ee76
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f425227e790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f425227e820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f425227e8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f425227e940>", "_build": "<function ActorCriticPolicy._build at 0x7f425227e9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f425227ea60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f425227eaf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f425227eb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f425227ec10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f425227eca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f425227ed30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f425227edc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4252287540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682379105716909224, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP8Rkr4gWxi/hzAsPjQ1iD+pbuS/zbIYwIFHTj/FlWq+LQH6Pgz/+L8D6kY+iSrzvxj9mb/n/sw7N31kv6zQYT8Ocbe/BG5gvZbMpT/t0sE8vydXPy1Jwr9GiI6/bCGJP1tqi7/rAeY+XfcCwG5mZ79mHCI/i7pIv6Gwoby11Jk/nsxUP3r5dL48oKk/TrOav44X4r8WOkS/HqLxvimzvz9OfWQ/ZyKFvx+nlj1gZwjAjjmsPy7oI7+46iU/11yYPQmDBb00w+A+zH0zPpfZPcBbaou/BXcOwKsz+j5uZme/LPCSPUARlr+EyQq/mNVkPxlIq7+VA5k/5zbUPjXVmr9OvxS/dZYKwOYijL+gHQq6bcPCPniBnz09Lj0/m8Ekvc0lxz/bNhg9dzR1PxgPhL+HH5y/CcdCPmLvwD/ASZw9W2qLv+sB5j5d9wLAh5uNP+D6Ir9s/R6/bCMUPtHl3r4HJSU8iCvZPgBUKr6lfYS7fUktPuPkXz7+B128RkUQPmKJjD/h0kC/JK06P7ggBTyeRRE/0My6vsyvAz6Ay2A+M+mRPyn2JD11nrO/6CUBvNwJaz/rAeY+qzP6Pm5mZ7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAO7m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAt36mOwAAAABx7+2/AAAAALFXCb4AAAAAS4/kPwAAAADlfwS+AAAAALZ03D8AAAAA2tEEvQAAAAAC7+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaaCAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMmEHj0AAAAAV4b5vwAAAABBncO9AAAAAMgW3j8AAAAA000tPAAAAAB4Jd8/AAAAAPdZOD0AAAAA+NPuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP7/0DUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBJ5Uk9AAAAANrh478AAAAAGaNJPQAAAADG1fc/AAAAACu3Dz4AAAAAcl/9PwAAAAD5ooU9AAAAAGox/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALlRM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACc+4vAAAAACcd/G/AAAAAHp1qT0AAAAAknnmPwAAAADnnga+AAAAAJOl4j8AAAAAazIGvgAAAAAGMvm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAYOBgeA/eMAWyUTegDjAF0lEdAqo3A4p+c6XV9lChoBkdAngtdcOby6WgHTegDaAhHQKqRNvze41B1fZQoaAZHQJ0CGUUwi7loB03oA2gIR0Cqk0VymygPdX2UKGgGR0CebH7kXDWLaAdN6ANoCEdAqpfeQbMot3V9lChoBkdAmrxbO/tY0WgHTegDaAhHQKqcPcGkep51fZQoaAZHQJ8gojrzGxVoB03oA2gIR0CqoJceKbazdX2UKGgGR0CcBHDWsijdaAdN6ANoCEdAqqKVZid8RnV9lChoBkdAniT4kE9t/GgHTegDaAhHQKqmkGlANXp1fZQoaAZHQJ5bfCDVYp5oB03oA2gIR0CqqVz4DcM3dX2UKGgGR0Ca+6Pa+N96aAdN6ANoCEdAqqzG+qR2bHV9lChoBkdAmFqco+fRNWgHTegDaAhHQKqu0ESuhbp1fZQoaAZHQJrLMw0waitoB03oA2gIR0CqsrwNkOI7dX2UKGgGR0CYKOWUKRdQaAdN6ANoCEdAqrbPk92X9nV9lChoBkdAl9A6CcwxnGgHTegDaAhHQKq8UNc4YJp1fZQoaAZHQJJAk11nuiNoB03oA2gIR0CqvpdPtUn5dX2UKGgGR0CaOHyEcsDoaAdN6ANoCEdAqsK/FglWwXV9lChoBkdAmvDhsVLzw2gHTegDaAhHQKrFkIVM23t1fZQoaAZHQJkqhuCPIXFoB03oA2gIR0CqyQdwvQF+dX2UKGgGR0CY6uJnQID6aAdN6ANoCEdAqssPTmW+oXV9lChoBkdAm03uJLuhK2gHTegDaAhHQKrPKEt/WlN1fZQoaAZHQJ2rLeLvTgFoB03oA2gIR0Cq0vZWJaaDdX2UKGgGR0CfN5T3qRlpaAdN6ANoCEdAqthnCyhSL3V9lChoBkdAoEj8690zTGgHTegDaAhHQKrarrnDBM11fZQoaAZHQJ/CXeDWbw1oB03oA2gIR0Cq3qmhufmLdX2UKGgGR0CfIg8f3evZaAdN6ANoCEdAquF+7g88tHV9lChoBkdAm99JhnanJmgHTegDaAhHQKrk/PsRg7Z1fZQoaAZHQJ5yADdP+GZoB03oA2gIR0Cq5v+XiR4hdX2UKGgGR0CaTQgElme2aAdN6ANoCEdAqurqz7di2HV9lChoBkdAmSiRGlQ/HGgHTegDaAhHQKruDpVS4vx1fZQoaAZHQJyWcedTYNBoB03oA2gIR0Cq81+/Ho5hdX2UKGgGR0CS75VrRBu5aAdN6ANoCEdAqvZVGqgh83V9lChoBkdAn3CNcjZ+QWgHTegDaAhHQKr6Mwr1/Uh1fZQoaAZHQJwHataIN3JoB03oA2gIR0Cq/PbdadMCdX2UKGgGR0Cepr1nuiN9aAdN6ANoCEdAqwBcWhysCHV9lChoBkdAnolhx5s0pGgHTegDaAhHQKsCYgdOqNp1fZQoaAZHQJjf5rrPdEdoB03oA2gIR0CrBlHU+cH4dX2UKGgGR0CbgcDe0ojOaAdN6ANoCEdAqwkotHxz73V9lChoBkdAnXFZ9E1EVmgHTegDaAhHQKsN6YLsrup1fZQoaAZHQJvMZYjjaPFoB03oA2gIR0CrERJwbVBldX2UKGgGR0CeGsVKPGQ0aAdN6ANoCEdAqxWYAsCkoHV9lChoBkdAnzddXko4MmgHTegDaAhHQKsYbNwiqyZ1fZQoaAZHQJ2mkXXRPXVoB03oA2gIR0CrG81t4zJqdX2UKGgGR0CcQ/D6nBLxaAdN6ANoCEdAqx3TuF6Av3V9lChoBkdAnQ53uJDVpmgHTegDaAhHQKsh2DCgsbx1fZQoaAZHQJtDZDqnm7toB03oA2gIR0CrJKxTCLuQdX2UKGgGR0CcZTmGucMFaAdN6ANoCEdAqyioF9roGXV9lChoBkdAnFl4dyT6i2gHTegDaAhHQKsryHIIWxh1fZQoaAZHQJ6D7XNC7btoB03oA2gIR0CrMRLlvIfbdX2UKGgGR0Cd37MMI/qxaAdN6ANoCEdAqzPhiG34K3V9lChoBkdAnB36BiCrcWgHTegDaAhHQKs3VMYdhiN1fZQoaAZHQJziPiPyTZBoB03oA2gIR0CrOVRjJ+2FdX2UKGgGR0Cc+eTVDrquaAdN6ANoCEdAqz0xCpm29nV9lChoBkdAnj0611GLDWgHTegDaAhHQKs//54W1tx1fZQoaAZHQJ3L4/TspodoB03oA2gIR0CrQ2XNs3yadX2UKGgGR0CeObEpAlfJaAdN6ANoCEdAq0Y7rkbPyHV9lChoBkdAnMi+/UONHmgHTegDaAhHQKtMZsEaESN1fZQoaAZHQJ5d2wQlKK5oB03oA2gIR0CrT2MMRYigdX2UKGgGR0CfFTrCm/FjaAdN6ANoCEdAq1LPWOIZZXV9lChoBkdAnjKMK9f1H2gHTegDaAhHQKtU4rWAf+11fZQoaAZHQKCrpWBjFydoB03oA2gIR0CrWM1aGHpKdX2UKGgGR0CfyBM+eOGTaAdN6ANoCEdAq1uYAQxvenV9lChoBkdAnq44EKVpsWgHTegDaAhHQKtfAyj59E11fZQoaAZHQJ+ZkHD7655oB03oA2gIR0CrYTBKDkELdX2UKGgGR0CfNY7T2FnJaAdN6ANoCEdAq2cQatLcsXV9lChoBkdAoRPbwBo242gHTegDaAhHQKtqy8ifQKN1fZQoaAZHQJ2vaCe2/i5oB03oA2gIR0Crbk7kwN9ZdX2UKGgGR0CdojiAUcn3aAdN6ANoCEdAq3Bb1kDp1XV9lChoBkdAnHDTzAeq72gHTegDaAhHQKt0WCf6Gg11fZQoaAZHQJn1HYSQHRloB03oA2gIR0Crdy7MPjGUdX2UKGgGR0CW07A5Jbt7aAdN6ANoCEdAq3quJUHY6HV9lChoBkdAmfVva6BiC2gHTegDaAhHQKt8um/Firl1fZQoaAZHQJenAGmk30hoB03oA2gIR0CrgjWAXl8xdX2UKGgGR0CVjk4OMERraAdN6ANoCEdAq4bKOo5xR3V9lChoBkdAmOrZKraM72gHTegDaAhHQKuKPWOIZZV1fZQoaAZHQJU/y/SH/LloB03oA2gIR0CrjEzFERapdX2UKGgGR0CU25mg8KXwaAdN6ANoCEdAq5A9oHs1K3V9lChoBkdAljjeXu3MIWgHTegDaAhHQKuTI+qR2bJ1fZQoaAZHQJrTlNet0V9oB03oA2gIR0CrlpUWuX/pdX2UKGgGR0CXkwtI065oaAdN6ANoCEdAq5i3uRcNY3V9lChoBkdAl2Y7FwT/Q2gHTegDaAhHQKudr2ZiNKh1fZQoaAZHQJ0iRVIZqEhoB03oA2gIR0Crogc6V+qjdX2UKGgGR0CaCGgLJCBxaAdN6ANoCEdAq6YhRoAXEnV9lChoBkdAmAEv9cbBGmgHTegDaAhHQKuoK/20zCV1fZQoaAZHQJtyeInBtUJoB03oA2gIR0CrrCW0Re1KdX2UKGgGR0Cc00CO3lS1aAdN6ANoCEdAq672NedCmnV9lChoBkdAlqqwIY3vQWgHTegDaAhHQKuybDIikft1fZQoaAZHQJooH9JjDsNoB03oA2gIR0CrtHexGDtgdX2UKGgGR0CXuvvK2a2GaAdN6ANoCEdAq7i274BV/HV9lChoBkdAlobkKVpsXWgHTegDaAhHQKu89Kp1ifB1fZQoaAZHQJoH8tvn8sNoB03oA2gIR0Crwa2Jzkp7dX2UKGgGR0CaSKS3solVaAdN6ANoCEdAq8PG9L6DXnV9lChoBkdAjyy6n752yWgHTegDaAhHQKvH2D0163R1fZQoaAZHQJW5KUILPUtoB03oA2gIR0CryqTuOS4fdX2UKGgGR0CPcL2IO6NEaAdN6ANoCEdAq84b/MnqmnV9lChoBkdAmkHlXmvGImgHTegDaAhHQKvQMnlXA/N1fZQoaAZHQJomoRZlnRNoB03oA2gIR0Cr1A8hLXcydX2UKGgGR0Cb+zP8AJb/aAdN6ANoCEdAq9gBb0OEunV9lChoBkdAl41P8IiTuGgHTegDaAhHQKvdW5OrQw91fZQoaAZHQJn58aJhvzhoB03oA2gIR0Cr3123BpHqdX2UKGgGR0CZ//zYEnstaAdN6ANoCEdAq+M9bkfcOHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}