FlipFlopsNSocks
commited on
Commit
·
8193cfa
1
Parent(s):
29bedc1
Update README.md
Browse files
README.md
CHANGED
@@ -87,6 +87,104 @@ model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finet
|
|
87 |
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
88 |
classifier("Hello I'm Omar and I live in Zürich.")
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
[{'end': 14,
|
91 |
'entity': 'I-PER',
|
92 |
'index': 5,
|
|
|
87 |
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
88 |
classifier("Hello I'm Omar and I live in Zürich.")
|
89 |
|
90 |
+
[{'end': 14,
|
91 |
+
'entity': 'I-PER',
|
92 |
+
'index': 5,
|
93 |
+
'score': 0.9999175,
|
94 |
+
'start': 10,
|
95 |
+
'word': '▁Omar'},
|
96 |
+
{'end': 35,
|
97 |
+
'entity': 'I-LOC',
|
98 |
+
'index': 10,
|
99 |
+
'score': 0.9999906,
|
100 |
+
'start': 29,
|
101 |
+
'word': '▁Zürich'}]
|
102 |
+
from transformers import pipeline
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
104 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
105 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
106 |
+
classifier("Alya told Jasmine that Andrew could pay with cash..")
|
107 |
+
[{'end': 2,
|
108 |
+
'entity': 'I-PER',
|
109 |
+
'index': 1,
|
110 |
+
'score': 0.9997861,
|
111 |
+
'start': 0,
|
112 |
+
'word': '▁Al'},
|
113 |
+
{'end': 4,
|
114 |
+
'entity': 'I-PER',
|
115 |
+
'index': 2,
|
116 |
+
'score': 0.9998591,
|
117 |
+
'start': 2,
|
118 |
+
'word': 'ya'},
|
119 |
+
{'end': 16,
|
120 |
+
'entity': 'I-PER',
|
121 |
+
'index': 4,
|
122 |
+
'score': 0.99995816,
|
123 |
+
'start': 10,
|
124 |
+
'word': '▁Jasmin'},
|
125 |
+
{'end': 17,
|
126 |
+
'entity': 'I-PER',
|
127 |
+
'index': 5,
|
128 |
+
'score': 0.9999584,
|
129 |
+
'start': 16,
|
130 |
+
'word': 'e'},
|
131 |
+
{'end': 29,
|
132 |
+
'entity': 'I-PER',
|
133 |
+
'index': 7,
|
134 |
+
'score': 0.99998057,
|
135 |
+
'start': 23,
|
136 |
+
'word': '▁Andrew'}]
|
137 |
+
|
138 |
+
Recommendations
|
139 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
140 |
+
|
141 |
+
Training
|
142 |
+
See the following resources for training data and training procedure details:
|
143 |
+
|
144 |
+
XLM-RoBERTa-large model card
|
145 |
+
CoNLL-2003 data card
|
146 |
+
Associated paper
|
147 |
+
Evaluation
|
148 |
+
See the associated paper for evaluation details.
|
149 |
+
|
150 |
+
Environmental Impact
|
151 |
+
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
|
152 |
+
|
153 |
+
Hardware Type: 500 32GB Nvidia V100 GPUs (from the associated paper)
|
154 |
+
Hours used: More information needed
|
155 |
+
Cloud Provider: More information needed
|
156 |
+
Compute Region: More information needed
|
157 |
+
Carbon Emitted: More information needed
|
158 |
+
Technical Specifications
|
159 |
+
See the associated paper for further details.
|
160 |
+
|
161 |
+
Citation
|
162 |
+
BibTeX:
|
163 |
+
|
164 |
+
@article{conneau2019unsupervised,
|
165 |
+
title={Unsupervised Cross-lingual Representation Learning at Scale},
|
166 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
167 |
+
journal={arXiv preprint arXiv:1911.02116},
|
168 |
+
year={2019}
|
169 |
+
}
|
170 |
+
|
171 |
+
APA:
|
172 |
+
|
173 |
+
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
|
174 |
+
Model Card Authors
|
175 |
+
This model card was written by the team at Hugging Face.
|
176 |
+
|
177 |
+
How to Get Started with the Model
|
178 |
+
Use the code below to get started with the model. You can use this model directly within a pipeline for NER.
|
179 |
+
|
180 |
+
Click to expand
|
181 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
182 |
+
from transformers import pipeline
|
183 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
184 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
185 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
186 |
+
classifier("Hello I'm Omar and I live in Zürich.")
|
187 |
+
|
188 |
[{'end': 14,
|
189 |
'entity': 'I-PER',
|
190 |
'index': 5,
|