FlexingD commited on
Commit
adae161
·
1 Parent(s): 9f28c7b

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Yarn-Mistral-7b-64k
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Yarn-Mistral-7b-64k",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "k_proj",
21
+ "up_proj",
22
+ "gate_proj",
23
+ "lm_head",
24
+ "v_proj",
25
+ "down_proj",
26
+ "q_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cbcd4fc7081136506343047a8b308f710f76c020a0eb9299c2dd642ede1abb7
3
+ size 340225224
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f724eb650747e6b08f59563506c283c8958ac232fcd070e31eae37593c0543
3
+ size 170951079
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b8bb5dabb8f30b48407430a7e8768c02bf7ccad39416ed7ec4faecbcde50814
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc0b368f296e4e21b94cd69d387a0c88d46a6c751f0797f63bf5c2fb03c1328f
3
+ size 627
trainer_state.json ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.17173278378842521,
5
+ "eval_steps": 50,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.3773773773773775e-05,
14
+ "loss": 0.9928,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.8941472172737122,
20
+ "eval_runtime": 5245.4303,
21
+ "eval_samples_per_second": 0.987,
22
+ "eval_steps_per_second": 0.123,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 2.2522522522522523e-05,
28
+ "loss": 0.877,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.02,
33
+ "eval_loss": 0.8646272420883179,
34
+ "eval_runtime": 5219.884,
35
+ "eval_samples_per_second": 0.992,
36
+ "eval_steps_per_second": 0.124,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.03,
41
+ "learning_rate": 2.1271271271271275e-05,
42
+ "loss": 0.8642,
43
+ "step": 150
44
+ },
45
+ {
46
+ "epoch": 0.03,
47
+ "eval_loss": 0.8599761128425598,
48
+ "eval_runtime": 5214.4761,
49
+ "eval_samples_per_second": 0.993,
50
+ "eval_steps_per_second": 0.124,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "learning_rate": 2.0020020020020023e-05,
56
+ "loss": 0.8576,
57
+ "step": 200
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "eval_loss": 0.8569617867469788,
62
+ "eval_runtime": 5214.0664,
63
+ "eval_samples_per_second": 0.993,
64
+ "eval_steps_per_second": 0.124,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.04,
69
+ "learning_rate": 1.8768768768768768e-05,
70
+ "loss": 0.8349,
71
+ "step": 250
72
+ },
73
+ {
74
+ "epoch": 0.04,
75
+ "eval_loss": 0.8535052537918091,
76
+ "eval_runtime": 5222.9322,
77
+ "eval_samples_per_second": 0.991,
78
+ "eval_steps_per_second": 0.124,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.05,
83
+ "learning_rate": 1.7517517517517516e-05,
84
+ "loss": 0.85,
85
+ "step": 300
86
+ },
87
+ {
88
+ "epoch": 0.05,
89
+ "eval_loss": 0.8515381813049316,
90
+ "eval_runtime": 5214.0267,
91
+ "eval_samples_per_second": 0.993,
92
+ "eval_steps_per_second": 0.124,
93
+ "step": 300
94
+ },
95
+ {
96
+ "epoch": 0.06,
97
+ "learning_rate": 1.6266266266266268e-05,
98
+ "loss": 0.8548,
99
+ "step": 350
100
+ },
101
+ {
102
+ "epoch": 0.06,
103
+ "eval_loss": 0.8497709035873413,
104
+ "eval_runtime": 5213.6211,
105
+ "eval_samples_per_second": 0.993,
106
+ "eval_steps_per_second": 0.124,
107
+ "step": 350
108
+ },
109
+ {
110
+ "epoch": 0.07,
111
+ "learning_rate": 1.5015015015015016e-05,
112
+ "loss": 0.8366,
113
+ "step": 400
114
+ },
115
+ {
116
+ "epoch": 0.07,
117
+ "eval_loss": 0.8475283980369568,
118
+ "eval_runtime": 5213.1999,
119
+ "eval_samples_per_second": 0.993,
120
+ "eval_steps_per_second": 0.124,
121
+ "step": 400
122
+ },
123
+ {
124
+ "epoch": 0.08,
125
+ "learning_rate": 1.3763763763763765e-05,
126
+ "loss": 0.8408,
127
+ "step": 450
128
+ },
129
+ {
130
+ "epoch": 0.08,
131
+ "eval_loss": 0.8464268445968628,
132
+ "eval_runtime": 5213.2855,
133
+ "eval_samples_per_second": 0.993,
134
+ "eval_steps_per_second": 0.124,
135
+ "step": 450
136
+ },
137
+ {
138
+ "epoch": 0.09,
139
+ "learning_rate": 1.2512512512512515e-05,
140
+ "loss": 0.8645,
141
+ "step": 500
142
+ },
143
+ {
144
+ "epoch": 0.09,
145
+ "eval_loss": 0.8458148241043091,
146
+ "eval_runtime": 5213.7104,
147
+ "eval_samples_per_second": 0.993,
148
+ "eval_steps_per_second": 0.124,
149
+ "step": 500
150
+ },
151
+ {
152
+ "epoch": 0.09,
153
+ "learning_rate": 1.1261261261261261e-05,
154
+ "loss": 0.8507,
155
+ "step": 550
156
+ },
157
+ {
158
+ "epoch": 0.09,
159
+ "eval_loss": 0.8435949087142944,
160
+ "eval_runtime": 5210.7804,
161
+ "eval_samples_per_second": 0.993,
162
+ "eval_steps_per_second": 0.124,
163
+ "step": 550
164
+ },
165
+ {
166
+ "epoch": 0.1,
167
+ "learning_rate": 1.0010010010010011e-05,
168
+ "loss": 0.8592,
169
+ "step": 600
170
+ },
171
+ {
172
+ "epoch": 0.1,
173
+ "eval_loss": 0.8434337973594666,
174
+ "eval_runtime": 5210.4901,
175
+ "eval_samples_per_second": 0.993,
176
+ "eval_steps_per_second": 0.124,
177
+ "step": 600
178
+ },
179
+ {
180
+ "epoch": 0.11,
181
+ "learning_rate": 8.758758758758758e-06,
182
+ "loss": 0.8326,
183
+ "step": 650
184
+ },
185
+ {
186
+ "epoch": 0.11,
187
+ "eval_loss": 0.8415650129318237,
188
+ "eval_runtime": 5212.5986,
189
+ "eval_samples_per_second": 0.993,
190
+ "eval_steps_per_second": 0.124,
191
+ "step": 650
192
+ },
193
+ {
194
+ "epoch": 0.12,
195
+ "learning_rate": 7.507507507507508e-06,
196
+ "loss": 0.8272,
197
+ "step": 700
198
+ },
199
+ {
200
+ "epoch": 0.12,
201
+ "eval_loss": 0.8408710360527039,
202
+ "eval_runtime": 5217.8607,
203
+ "eval_samples_per_second": 0.992,
204
+ "eval_steps_per_second": 0.124,
205
+ "step": 700
206
+ },
207
+ {
208
+ "epoch": 0.13,
209
+ "learning_rate": 6.256256256256257e-06,
210
+ "loss": 0.82,
211
+ "step": 750
212
+ },
213
+ {
214
+ "epoch": 0.13,
215
+ "eval_loss": 0.8401119709014893,
216
+ "eval_runtime": 5220.4921,
217
+ "eval_samples_per_second": 0.991,
218
+ "eval_steps_per_second": 0.124,
219
+ "step": 750
220
+ },
221
+ {
222
+ "epoch": 0.14,
223
+ "learning_rate": 5.005005005005006e-06,
224
+ "loss": 0.826,
225
+ "step": 800
226
+ },
227
+ {
228
+ "epoch": 0.14,
229
+ "eval_loss": 0.8393945097923279,
230
+ "eval_runtime": 5287.3794,
231
+ "eval_samples_per_second": 0.979,
232
+ "eval_steps_per_second": 0.122,
233
+ "step": 800
234
+ },
235
+ {
236
+ "epoch": 0.15,
237
+ "learning_rate": 3.753753753753754e-06,
238
+ "loss": 0.8468,
239
+ "step": 850
240
+ },
241
+ {
242
+ "epoch": 0.15,
243
+ "eval_loss": 0.8389515280723572,
244
+ "eval_runtime": 5212.07,
245
+ "eval_samples_per_second": 0.993,
246
+ "eval_steps_per_second": 0.124,
247
+ "step": 850
248
+ },
249
+ {
250
+ "epoch": 0.15,
251
+ "learning_rate": 2.502502502502503e-06,
252
+ "loss": 0.8438,
253
+ "step": 900
254
+ },
255
+ {
256
+ "epoch": 0.15,
257
+ "eval_loss": 0.8384743928909302,
258
+ "eval_runtime": 5211.9686,
259
+ "eval_samples_per_second": 0.993,
260
+ "eval_steps_per_second": 0.124,
261
+ "step": 900
262
+ },
263
+ {
264
+ "epoch": 0.16,
265
+ "learning_rate": 1.2512512512512514e-06,
266
+ "loss": 0.8384,
267
+ "step": 950
268
+ },
269
+ {
270
+ "epoch": 0.16,
271
+ "eval_loss": 0.838046669960022,
272
+ "eval_runtime": 5209.2343,
273
+ "eval_samples_per_second": 0.994,
274
+ "eval_steps_per_second": 0.124,
275
+ "step": 950
276
+ },
277
+ {
278
+ "epoch": 0.17,
279
+ "learning_rate": 0.0,
280
+ "loss": 0.8527,
281
+ "step": 1000
282
+ },
283
+ {
284
+ "epoch": 0.17,
285
+ "eval_loss": 0.8379368782043457,
286
+ "eval_runtime": 5209.3452,
287
+ "eval_samples_per_second": 0.994,
288
+ "eval_steps_per_second": 0.124,
289
+ "step": 1000
290
+ }
291
+ ],
292
+ "logging_steps": 50,
293
+ "max_steps": 1000,
294
+ "num_input_tokens_seen": 0,
295
+ "num_train_epochs": 1,
296
+ "save_steps": 50,
297
+ "total_flos": 1.76841553870848e+17,
298
+ "trial_name": null,
299
+ "trial_params": null
300
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c04d893397c40d8d7b9acd6fc0dd6af009785bcc847eb705cbea8d6f1d0cfb
3
+ size 4155