|
import random |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def DiffAugment(x, types=[]): |
|
for p in types: |
|
for f in AUGMENT_FNS[p]: |
|
x = f(x) |
|
return x.contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rand_brightness(x): |
|
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) |
|
return x |
|
|
|
def rand_saturation(x): |
|
x_mean = x.mean(dim=1, keepdim=True) |
|
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean |
|
return x |
|
|
|
def rand_contrast(x): |
|
x_mean = x.mean(dim=[1, 2, 3], keepdim=True) |
|
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean |
|
return x |
|
|
|
def rand_translation(x, ratio=0.125): |
|
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) |
|
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) |
|
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) |
|
grid_batch, grid_x, grid_y = torch.meshgrid( |
|
torch.arange(x.size(0), dtype=torch.long, device=x.device), |
|
torch.arange(x.size(2), dtype=torch.long, device=x.device), |
|
torch.arange(x.size(3), dtype=torch.long, device=x.device), |
|
indexing = 'ij') |
|
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) |
|
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) |
|
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) |
|
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) |
|
return x |
|
|
|
def rand_offset(x, ratio=1, ratio_h=1, ratio_v=1): |
|
w, h = x.size(2), x.size(3) |
|
|
|
imgs = [] |
|
for img in x.unbind(dim = 0): |
|
max_h = int(w * ratio * ratio_h) |
|
max_v = int(h * ratio * ratio_v) |
|
|
|
value_h = random.randint(0, max_h) * 2 - max_h |
|
value_v = random.randint(0, max_v) * 2 - max_v |
|
|
|
if abs(value_h) > 0: |
|
img = torch.roll(img, value_h, 2) |
|
|
|
if abs(value_v) > 0: |
|
img = torch.roll(img, value_v, 1) |
|
|
|
imgs.append(img) |
|
|
|
return torch.stack(imgs) |
|
|
|
def rand_offset_h(x, ratio=1): |
|
return rand_offset(x, ratio=1, ratio_h=ratio, ratio_v=0) |
|
|
|
def rand_offset_v(x, ratio=1): |
|
return rand_offset(x, ratio=1, ratio_h=0, ratio_v=ratio) |
|
|
|
def rand_cutout(x, ratio=0.5): |
|
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) |
|
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) |
|
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) |
|
grid_batch, grid_x, grid_y = torch.meshgrid( |
|
torch.arange(x.size(0), dtype=torch.long, device=x.device), |
|
torch.arange(cutout_size[0], dtype=torch.long, device=x.device), |
|
torch.arange(cutout_size[1], dtype=torch.long, device=x.device), |
|
indexing = 'ij') |
|
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) |
|
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) |
|
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) |
|
mask[grid_batch, grid_x, grid_y] = 0 |
|
x = x * mask.unsqueeze(1) |
|
return x |
|
|
|
AUGMENT_FNS = { |
|
'color': [rand_brightness, rand_saturation, rand_contrast], |
|
'offset': [rand_offset], |
|
'offset_h': [rand_offset_h], |
|
'offset_v': [rand_offset_v], |
|
'translation': [rand_translation], |
|
'cutout': [rand_cutout], |
|
} |