aapot
Add 100k train step model
0b44750
import functools
import seqio
import tensorflow as tf
import t5.data
from datasets import load_dataset, load_from_disk
from t5.data import postprocessors
from t5.data import preprocessors
from t5.evaluation import metrics
from seqio import FunctionDataSource, utils
from ul2_objective import ul2_objective
# values from UL2 paper https://arxiv.org/pdf/2205.05131.pdf chapter 3.1.2 table 1
R_DENOISER_SPAN_LENGTHS = [3.0, 8.0]
X_DENOISER_SPAN_LENGTHS = [3.0, 8.0, 64.0, 64.0]
R_DENOISER_CORRUPT_RATES = [0.15, 0.15]
X_DENOISER_CORRUPT_RATES = [0.5, 0.5, 0.15, 0.5]
R_DENOISER_TOKEN_PREFIX = '[NLU]'
X_DENOISER_TOKEN_PREFIX = '[NLG]'
S_DENOISER_TOKEN_PREFIX = '[S2S]'
TaskRegistry = seqio.TaskRegistry
vocabulary = seqio.SentencePieceVocabulary('spiece.model', extra_ids=0)
DEFAULT_OUTPUT_FEATURES = {
"inputs": seqio.Feature(
vocabulary=vocabulary, add_eos=True,
required=False),
"targets": seqio.Feature(
vocabulary=vocabulary, add_eos=True)
}
def gen_dataset(split, shuffle=False, seed=None, column="text", dataset=None):
if shuffle:
if seed:
dataset = dataset.shuffle(seed=seed)
else:
dataset = dataset.shuffle()
while True:
for item in dataset[str(split)]:
if item[column] is not None:
yield item[column]
def dataset_fn(split, shuffle_files, seed=None, dataset=None):
return tf.data.Dataset.from_generator(
functools.partial(gen_dataset, split, shuffle_files,
seed, dataset=dataset),
output_signature=tf.TensorSpec(
shape=(), dtype=tf.string, name=dataset_name)
)
@utils.map_over_dataset
def target_to_key(x, key_map, target_key):
"""Assign the value from the dataset to target_key in key_map"""
return {**key_map, target_key: x}
dataset_name = "/researchdisk/lm_training_dataset_full"
dataset_params = {"from_disk_path": dataset_name}
if "from_disk_path" in dataset_params:
dataset = load_from_disk(dataset_params.get("from_disk_path"))
else:
dataset = load_dataset(**dataset_params)
dataset_shapes = {"train": dataset["train"].num_rows,
"validation": dataset["validation"].num_rows}
TaskRegistry.add(
"pretrain_finnish_ul2",
source=seqio.FunctionDataSource(
dataset_fn=functools.partial(dataset_fn, dataset=dataset),
splits=("train", "validation"),
caching_permitted=False,
num_input_examples=dataset_shapes,
),
preprocessors=[
functools.partial(
target_to_key, key_map={
"inputs": None,
"targets": None,
}, target_key="targets"),
seqio.preprocessors.tokenize,
functools.partial(
ul2_objective,
shard_ds=False,
use_prefix_lm_task=True, # use S-denoising
rates=[0.4 / len(R_DENOISER_SPAN_LENGTHS)]*len(R_DENOISER_SPAN_LENGTHS) + [
0.4 / len(X_DENOISER_SPAN_LENGTHS)]*len(X_DENOISER_SPAN_LENGTHS) + [0.2], # equal total 40% rate for both R- and X-denoisers + 20% for S-denoising (suggested at the paper chapter 4.5)
mean_noise_span_lengths=R_DENOISER_SPAN_LENGTHS + X_DENOISER_SPAN_LENGTHS,
noise_densities=R_DENOISER_CORRUPT_RATES + X_DENOISER_CORRUPT_RATES,
optional_task_prefixes=[R_DENOISER_TOKEN_PREFIX]*len(R_DENOISER_SPAN_LENGTHS) + [
X_DENOISER_TOKEN_PREFIX]*len(X_DENOISER_SPAN_LENGTHS) + [S_DENOISER_TOKEN_PREFIX],
reserved_for_packing=1, # make room for task prefix token
),
seqio.preprocessors.append_eos_after_trim,
],
output_features={"targets": DEFAULT_OUTPUT_FEATURES["targets"]},
metric_fns=[metrics.accuracy]
)