|
from datasets import load_dataset, load_from_disk |
|
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer |
|
from transformers import AutoConfig, AutoTokenizer |
|
|
|
|
|
model_dir = "./" |
|
|
|
|
|
config = AutoConfig.from_pretrained("roberta-large") |
|
config.save_pretrained(model_dir) |
|
|
|
|
|
dataset = load_from_disk("/researchdisk1/data/training_data_full") |
|
dataset = dataset["train"] |
|
|
|
|
|
tokenizer = ByteLevelBPETokenizer() |
|
def batch_iterator(batch_size=1000): |
|
for i in range(0, len(dataset), batch_size): |
|
yield dataset[i: i + batch_size]["text"] |
|
|
|
|
|
tokenizer.train_from_iterator(batch_iterator(), vocab_size=config.vocab_size, min_frequency=2, special_tokens=[ |
|
"<s>", |
|
"<pad>", |
|
"</s>", |
|
"<unk>", |
|
"<mask>", |
|
]) |
|
|
|
tokenizer.save(f"{model_dir}/tokenizer.json") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
tokenizer.save_pretrained(model_dir) |