MambaMIM / models /MambaMIM.py
FengheTan9's picture
Upload folder using huggingface_hub
6da2a44 verified
from pprint import pformat
from typing import List
import sys
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_
import models.encoder as encoder
from models.decoder import LightDecoder
from itertools import accumulate
class MambaMIM(nn.Module):
def __init__(
self, sparse_encoder: encoder.SparseEncoder, dense_decoder: LightDecoder,
mask_ratio=0.6, densify_norm='ln', sbn=True,
):
super().__init__()
input_size, downsample_raito = sparse_encoder.input_size, sparse_encoder.downsample_raito
self.downsample_raito = downsample_raito
self.fmap_h, self.fmap_w, self.fmap_d = input_size // downsample_raito, input_size // downsample_raito, input_size // downsample_raito
self.mask_ratio = mask_ratio
self.len_keep = round(self.fmap_h * self.fmap_w * self.fmap_d * (1 - mask_ratio))
self.sparse_encoder = sparse_encoder
self.dense_decoder = dense_decoder
self.sbn = sbn
self.hierarchy = len(sparse_encoder.enc_feat_map_chs)
self.densify_norm_str = densify_norm.lower()
self.densify_norms = nn.ModuleList()
self.densify_projs = nn.ModuleList()
self.mask_tokens = nn.ParameterList()
# build the `densify` layers
e_widths, d_width = self.sparse_encoder.enc_feat_map_chs, self.dense_decoder.width
e_widths: List[int]
self.A_interpolation = nn.Parameter(torch.zeros(1, self.sparse_encoder.enc_feat_map_chs[-1], self.sparse_encoder.enc_feat_map_chs[-1]))
print("self.A_interpolation: ", self.A_interpolation.shape)
for i in range(
self.hierarchy): # from the smallest feat map to the largest; i=0: the last feat map; i=1: the second last feat map ...
e_width = e_widths.pop()
# create mask token
p = nn.Parameter(torch.zeros(1, e_width, 1, 1, 1))
trunc_normal_(p, mean=0, std=.02, a=-.02, b=.02)
self.mask_tokens.append(p)
# create densify norm
densify_norm = nn.Identity()
self.densify_norms.append(densify_norm)
# create densify proj
if i == 0 and e_width == d_width:
densify_proj = nn.Identity() # todo: NOTE THAT CONVNEXT-S WOULD USE THIS, because it has a width of 768 that equals to the decoder's width 768
print(f'[MambaMIM.__init__, densify {i + 1}/{self.hierarchy}]: use nn.Identity() as densify_proj')
else:
kernel_size = 1 if i <= 0 else 3
densify_proj = nn.Conv3d(e_width, d_width, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
bias=True)
print(
f'[MambaMIM.__init__, densify {i + 1}/{self.hierarchy}]: densify_proj(ksz={kernel_size}, #para={sum(x.numel() for x in densify_proj.parameters()) / 1e6:.2f}M)')
self.densify_projs.append(densify_proj)
# todo: the decoder's width follows a simple halfing rule; you can change it to any other rule
d_width //= 2
print(f'[MambaMIM.__init__] dims of mask_tokens={tuple(p.numel() for p in self.mask_tokens)}')
def mask(self, B: int, device, generator=None):
h, w, d = self.fmap_h, self.fmap_w, self.fmap_d
idx = torch.rand(B, h * w * d, generator=generator).argsort(dim=1)
idx = idx[:, :self.len_keep].to(device) # (B, len_keep)
return torch.zeros(B, h * w * d, dtype=torch.bool, device=device)\
.scatter_(dim=1, index=idx, value=True).view(B, 1, h, w, d)
def mask_token_every_batch(self, bcfff,cur_active):
#A_token#
flag = cur_active.flatten(2).clone()
flag[0][0][0] = True
flag[0][0][-1] = True
indices = torch.nonzero(flag.squeeze()).squeeze()
#A_token#
B,N,H,L,W = bcfff.shape
A_token =[]
for i in range(0,len(indices)-1):
A_power = [torch.linalg.matrix_power(self.A_interpolation, i) for i in range(indices[i+1]-indices[i])]
max_power = indices[i+1]-indices[i]-1
for j in range(0,indices[i+1]-indices[i]):
A_token.append(A_power[max_power-j])
A_token.append(self.A_interpolation)
A_token = torch.cat(A_token, dim=0)
X_token = []
X_unmask = bcfff.flatten(2).transpose(1, 2).squeeze().unsqueeze(-1)
for i in range(0,len(indices)-1):
alpha = torch.linspace(0, 1, indices[i + 1] - indices[i], dtype=X_unmask.dtype, device=X_unmask.device)
alpha = alpha.view(-1, 1) # alpha
X_interpolation = (1 - alpha) * X_unmask[indices[i]].transpose(0, 1) + alpha * X_unmask[indices[i + 1]].transpose(0, 1)
X_token.append(X_interpolation.unsqueeze(-1))
X_last_token = X_unmask[indices[-1]].unsqueeze(0)
X_token.append(X_last_token)
X_token = torch.cat(X_token,dim = 0)
AX = A_token.cuda() @ X_token
mask_token = AX
for i in range(0,len(indices)-1):
current_sum = list(accumulate(AX[indices[i]:indices[i+1]]))
mask_token[indices[i]:indices[i+1]] = torch.stack(current_sum,dim = 0)
mask_token = AX.reshape(B,N,H,L,W)
return mask_token
def manba_mask(self,bcfff,cur_active):
'''
S6T
'''
B,N,H,W,L = cur_active.shape
cur_active_list = torch.chunk(cur_active,B,dim = 0)
bcfff_list = torch.chunk(bcfff,B,dim = 0)
mask_token_list=[]
for i in range(B):
mask_token_list.append(self.mask_token_every_batch(bcfff_list[i],cur_active_list[i]))
mask_token = torch.cat(mask_token_list, dim=0)
return mask_token
def forward(self, inp_bchwd: torch.Tensor, active_b1fff=None, vis=False):
# step1. Mask
if active_b1fff is None: # rand mask
active_b1fff: torch.BoolTensor = self.mask(inp_bchwd.shape[0], inp_bchwd.device) # (B, 1, f, f, f)
encoder._cur_active = active_b1fff # (B, 1, f, f)
active_b1hwd = active_b1fff.repeat_interleave(self.downsample_raito, 2).repeat_interleave(self.downsample_raito,
3).repeat_interleave(
self.downsample_raito, 4) # (B, 1, H, W, D)
masked_bchwd = inp_bchwd * active_b1hwd
# step2. Encode: get hierarchical encoded sparse features (a list containing 4 feature maps at 4 scales)
fea_bcfffs: List[torch.Tensor] = self.sparse_encoder(masked_bchwd, active_b1fff)
fea_bcfffs.reverse() # after reversion: from the smallest feature map to the largest
# step3. Densify: get hierarchical dense features for decoding (need to modified !!!!!!!!!!!)
cur_active = active_b1fff # (B, 1, f, f, f)
to_dec = []
for i, bcfff in enumerate(fea_bcfffs): # from the smallest feature map to the largest
if bcfff is not None:
bcfff = self.densify_norms[i](bcfff)
mask_tokens = self.manba_mask(bcfff,cur_active) if i==0 else self.mask_tokens[i].expand_as(bcfff)
# mask_tokens = self.mask_tokens[i].expand_as(bcfff)
bcfff = torch.where(cur_active.expand_as(bcfff), bcfff,
mask_tokens) # fill in empty (non-active) positions with [mask] tokens
bcfff: torch.Tensor = self.densify_projs[i](bcfff)
to_dec.append(bcfff)
cur_active = cur_active.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3).repeat_interleave(2,
dim=4) # dilate the mask map, from (B, 1, f, f) to (B, 1, H, W)
# step4. Decode and reconstruct
rec_bchwd = self.dense_decoder(to_dec)
inp, rec = self.patchify(inp_bchwd), self.patchify(
rec_bchwd) # inp and rec: (B, L = f*f*f, N = C*downsample_raito**2)
mean = inp.mean(dim=-1, keepdim=True)
var = (inp.var(dim=-1, keepdim=True) + 1e-6) ** .5
inp = (inp - mean) / var
l2_loss = ((rec - inp) ** 2).mean(dim=2, keepdim=False) # (B, L, C) ==mean==> (B, L)
non_active = active_b1fff.logical_not().int().view(active_b1fff.shape[0], -1) # (B, 1, f, f, f) => (B, L)
recon_loss = l2_loss.mul_(non_active).sum() / (
non_active.sum() + 1e-8) # loss only on masked (non-active) patches
if vis:
masked_bchwd = inp_bchwd * active_b1hwd
rec_bchwd = self.unpatchify(rec * var + mean)
rec_or_inp = torch.where(active_b1hwd, inp_bchwd, rec_bchwd)
return inp_bchwd, masked_bchwd, rec_or_inp
else:
return recon_loss
def patchify(self, bchwd):
p = self.downsample_raito
h, w, d = self.fmap_h, self.fmap_w, self.fmap_d
B, C = bchwd.shape[:2]
bchwd = bchwd.reshape(shape=(B, C, h, p, w, p, d, p))
bchwd = torch.einsum('bchpwqds->bhwdpqsc', bchwd)
bln = bchwd.reshape(shape=(B, h * w * d, C * p ** 3)) # (B, f*f, 3*downsample_raito**2)
return bln
def unpatchify(self, bln):
p = self.downsample_raito
h, w, d = self.fmap_h, self.fmap_w, self.fmap_d
B, C = bln.shape[0], bln.shape[-1] // p ** 3
bln = bln.reshape(shape=(B, h, w, d, p, p, p, C))
bln = torch.einsum('bhwdpqsc->bchpwqds', bln)
bchwd = bln.reshape(shape=(B, C, h * p, w * p, d * p))
return bchwd
def __repr__(self):
return (
f'\n'
f'[MambaMIM.config]: {pformat(self.get_config(), indent=2, width=250)}\n'
f'[MambaMIM.structure]: {super(MambaMIM, self).__repr__().replace(MambaMIM.__name__, "")}'
)
def get_config(self):
return {
# self
'mask_ratio': self.mask_ratio,
'densify_norm_str': self.densify_norm_str,
'sbn': self.sbn, 'hierarchy': self.hierarchy,
# enc
'sparse_encoder.input_size': self.sparse_encoder.input_size,
# dec
'dense_decoder.width': self.dense_decoder.width,
}
def state_dict(self, destination=None, prefix='', keep_vars=False, with_config=False):
state = super(MambaMIM, self).state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
if with_config:
state['config'] = self.get_config()
return state
def load_state_dict(self, state_dict, strict=True):
config: dict = state_dict.pop('config', None)
incompatible_keys = super(MambaMIM, self).load_state_dict(state_dict, strict=strict)
if config is not None:
for k, v in self.get_config().items():
ckpt_v = config.get(k, None)
if ckpt_v != v:
err = f'[SparseMIM.load_state_dict] config mismatch: this.{k}={v} (ckpt.{k}={ckpt_v})'
if strict:
raise AttributeError(err)
else:
print(err, file=sys.stderr)
return incompatible_keys