|
import pandas as pd |
|
import numpy as np |
|
from smolagents import HfApiModel,tool,CodeAgent |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
@tool |
|
def clean_data(df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Clean the DataFrame by stripping whitespace from column names and dropping rows that are completely empty. |
|
|
|
Args: |
|
df (pd.DataFrame): The input DataFrame containing the raw data. |
|
|
|
Returns: |
|
pd.DataFrame: A cleaned DataFrame with stripped column names and without completely empty rows. |
|
""" |
|
df.columns = df.columns.str.strip() |
|
df = df.dropna(how="all") |
|
return df |
|
|
|
@tool |
|
def extract_features(df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Dynamically extract features from the DataFrame. |
|
|
|
For numeric columns: |
|
- If all values are non-negative, a log-transformed version is created. |
|
|
|
For columns that appear to be dates: |
|
- Year, month, and day are extracted. |
|
|
|
For non-numeric, non-date columns: |
|
- They are encoded as categorical numeric codes. |
|
|
|
Args: |
|
df (pd.DataFrame): The input DataFrame containing the raw data. |
|
|
|
Returns: |
|
pd.DataFrame: The DataFrame updated with new dynamically engineered features. |
|
""" |
|
|
|
numeric_cols = df.select_dtypes(include=[np.number]).columns.to_list() |
|
for col in numeric_cols: |
|
if (df[col] >= 0).all(): |
|
df[f"log_{col}"] = np.log(df[col] + 1) |
|
|
|
|
|
for col in df.columns: |
|
if "date" in col.lower() or "time" in col.lower(): |
|
try: |
|
df[col] = pd.to_datetime(df[col], errors='coerce') |
|
df[f"{col}_year"] = df[col].dt.year |
|
df[f"{col}_month"] = df[col].dt.month |
|
df[f"{col}_day"] = df[col].dt.day |
|
except Exception: |
|
pass |
|
|
|
|
|
non_numeric = df.select_dtypes(include=["object"]).columns.to_list() |
|
valid_cat = [] |
|
for col in non_numeric: |
|
try: |
|
pd.to_datetime(df[col], errors='raise') |
|
except Exception: |
|
valid_cat.append(col) |
|
for col in valid_cat: |
|
df[f"{col}_cat"] = df[col].astype("category").cat.codes |
|
|
|
return df |
|
|
|
@tool |
|
def save_to_csv(df: pd.DataFrame, filename: str = "output.csv") -> str: |
|
""" |
|
Save the DataFrame to a CSV file and return the file path. |
|
|
|
Args: |
|
df (pd.DataFrame): The DataFrame to save. |
|
filename (str): The name of the output CSV file. |
|
|
|
Returns: |
|
str: The file path of the saved CSV. |
|
""" |
|
df.to_csv(filename, index=False) |
|
return filename |
|
|
|
class DataSmolAgent(CodeAgent): |
|
""" |
|
A data processing agent that cleans and extracts features from the provided DataFrame. |
|
""" |
|
def __init__(self, df: pd.DataFrame): |
|
self.df = df |
|
self.tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct") |
|
self.model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct") |
|
super().__init__( |
|
tools=[ |
|
clean_data, |
|
extract_features, |
|
save_to_csv, |
|
], |
|
model=self.model, |
|
additional_authorized_imports=["pandas", "numpy"] |
|
) |
|
|
|
def run(self, prompt: str, output_csv: bool = False) -> pd.DataFrame: |
|
|
|
clean_output = self.tools["clean_data"](df=self.df) |
|
self.df = clean_output.result if hasattr(clean_output, "result") else clean_output |
|
|
|
features_output = self.tools["extract_features"](df=self.df) |
|
self.df = features_output.result if hasattr(features_output, "result") else features_output |
|
|
|
if output_csv: |
|
csv_output = self.tools["save_to_csv"](df=self.df, filename="processed_output.csv") |
|
print(f"CSV saved at: {csv_output}") |
|
|
|
return self.df |