ppo-LunarLander-v2 / config.json
Farseer-W's picture
DRL Tutorial. Upload PPO LunarLander-v2 trained agent
ff8f737 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a75e666e8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a75e666e950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a75e666e9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a75e666ea70>", "_build": "<function ActorCriticPolicy._build at 0x7a75e666eb00>", "forward": "<function ActorCriticPolicy.forward at 0x7a75e666eb90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a75e666ec20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a75e666ecb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a75e666ed40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a75e666edd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a75e666ee60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a75e666eef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a75e660e1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730835528001384642, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2YP7x8CL8+ysANPcKkbL6pphW9uNxoPAAAAAAAAAAAM7N3PHZNJLwdnlQ9qkeUvRgmv7oGFFO8AACAPwAAgD/NvOC6GL7wPWIRnT1/5Ve+DF4mPQr7KL0AAAAAAAAAAECy5T34S+g8Rdt6va2Egr5+0lw8F/WvPQAAAAAAAAAAAHaSPRS4proaQmM1jmizMC8GkLgLSJq0AACAPwAAgD9NvXe9Uqj1ufLblTbjci0yyOsiO44Is7UAAIA/AACAP2ZHBb3kFGQ+VLutPSaXSL69IAM9qx5fPAAAAAAAAAAAmj+8vK6Zj7rjpKE2zZ79MQmTQzulkbu1AACAPwAAgD9Fr8S+mzKBP8MN9L19Z72+8gJ3vjZJFT0AAAAAAAAAAJo3db1ridk9nmtCPpmLmr48A0k9oOFkvQAAAAAAAAAAZnK2vbgezbk5/BE+H0OatYyLCLy6kJi0AACAPwAAAADNVew9lhMYP70g/b3pj5u+eurYPC2YOTsAAAAAAAAAAPAfmr5aiXU/ztPhvq7Xtr4IubC+IXebPAAAAAAAAAAAM3skuxSO1rj13OQ1s/olMT2t0Dtr3RW1AACAPwAAgD/GZVE+WGGIPjNnib4t/2i+6kUtPXkJF74AAAAAAAAAABrUyz2k4Bu5CIysN4yCEzN4Bjy6rqHLtgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2tJP69CeGMAWyUTQgBjAF0lEdAkXsncHnln3V9lChoBkdAclWxoIv8ImgHTSkBaAhHQJF8WQEIPbx1fZQoaAZHQHLcRd6cAipoB009AWgIR0CRfFkDIRywdX2UKGgGR0Bx2ijj7yhBaAdNFAFoCEdAkXzN2ovSMXV9lChoBkdAcCYPOpsGgWgHTRoBaAhHQJF+OKIi1Rd1fZQoaAZHwDF2A8SwnploB0voaAhHQJF/EdcSoOx1fZQoaAZHQHH/e5e7cwhoB01FAWgIR0CRf7MSK3uvdX2UKGgGR0BxtLtu1ndwaAdNbAFoCEdAkX/GqPwNLHV9lChoBkdAcCSLqUu+RGgHTUABaAhHQJGASqDK5kN1fZQoaAZHQG2lPeHi3odoB00NAWgIR0CRgHzZ6D5CdX2UKGgGR0BwsE41gpjMaAdNOwFoCEdAkYEcWj4593V9lChoBkdAb1NjOLR8dGgHTREBaAhHQJGBupqASWZ1fZQoaAZHQHHGI+bExZdoB00nAWgIR0CRgcwQ176YdX2UKGgGR0BwWpTP0I1MaAdNIAFoCEdAkYK4ZIg/1XV9lChoBkdAcHVTH80k4WgHS/FoCEdAkYLIhY/3WXV9lChoBkdAcR64VARkE2gHTS8BaAhHQJGF0fA9FF51fZQoaAZHQHDaWA9V3lloB00kAWgIR0CRh3idat9ydX2UKGgGR0ByxHdi2DxtaAdNTQFoCEdAkYd3zMA3k3V9lChoBkdAcFpoGpuMuWgHS/1oCEdAkYed5IH1OHV9lChoBkdAcj4WM0gr6WgHTSIBaAhHQJGIWRMewLV1fZQoaAZHQHHjsDW9US9oB00TAWgIR0CRiGSmqHXVdX2UKGgGR0BxhtFocrAhaAdNCgFoCEdAkYizxoZhrnV9lChoBkdAcNn2hIvrW2gHTRkBaAhHQJGJYf2bobJ1fZQoaAZHQHEmVUMoc71oB00MAWgIR0CRiamY0EX+dX2UKGgGR0BwnDmCAc1gaAdNAgFoCEdAkYs4jW07bXV9lChoBkdAbf3wlSjxkWgHTTEBaAhHQJGLmAiFCcB1fZQoaAZHQHAbF5KODJ5oB000AWgIR0CRi53s5XEJdX2UKGgGR0BxKDCTEBKdaAdNcQFoCEdAkY703GXHBHV9lChoBkdAcLvLDhtLtmgHTRABaAhHQJGPKTSsr/d1fZQoaAZHQG9cOYplSTBoB00KAWgIR0CRkkPz4DcNdX2UKGgGR0ByUNjAi3XqaAdNJwFoCEdAkZKMzImw7nV9lChoBkdAcAAL9/BnBmgHTRABaAhHQJGTGX/o7mx1fZQoaAZHQHEYja0x/NJoB00xAWgIR0CRk1ct5D7ZdX2UKGgGR0BttRFuvUz9aAdNMgFoCEdAkZR/seGO/HV9lChoBkdAbc31xKg7HWgHTRQBaAhHQJGVDHwPRRd1fZQoaAZHQG8aOmixmkFoB0v/aAhHQJGWgumJm/Z1fZQoaAZHQHI4exrzoU1oB007AWgIR0CRlp4Cp3otdX2UKGgGR0ByIKymhufmaAdL+WgIR0CRlsXYlIEsdX2UKGgGR0Bv2yEcsDnvaAdNBgFoCEdAkZdnvQWvbHV9lChoBkdAUHMQbuMMqmgHTegDaAhHQJGbhG6PKdR1fZQoaAZHQHFSSwbEP2BoB00kAWgIR0CRnaeLNwBHdX2UKGgGR0BYl+2d/axpaAdN6ANoCEdAkZ6MJlar3nV9lChoBkdAcz25HVf/m2gHS/hoCEdAkZ6X+2mYSnV9lChoBkdAcZcYlY2bX2gHTUkBaAhHQJGfNsvZh8Z1fZQoaAZHQHDDxNRFZxJoB00dAWgIR0CRoBI42jwhdX2UKGgGR0Bwq8NPP9k0aAdNLgFoCEdAkaEWuX/o7nV9lChoBkdAUFfiMo+fRWgHS/VoCEdAkaF221D0DnV9lChoBkdAce9UzKs+3mgHTSUBaAhHQJGhmglF+d91fZQoaAZHQHBMlOj7AL1oB00DAWgIR0CRocYXO4XodX2UKGgGR0BxePwG4ZuRaAdNAwFoCEdAkbPSCnP3SXV9lChoBkdAciy7HAAQx2gHTVYBaAhHQJGz/JeVs1t1fZQoaAZHQFrwi7kGRmtoB03oA2gIR0CRtAV5rxiHdX2UKGgGR0ByaUf2bobGaAdNQAFoCEdAkbQ3CsOoYXV9lChoBkdAaOxddmg8KWgHTbUCaAhHQJG1DyAhB7h1fZQoaAZHQExdrO7g88toB0uoaAhHQJG16EEkjX51fZQoaAZHQHFqk2UB4lhoB00YAWgIR0CRtqEMb3oLdX2UKGgGR0Bx5V+SbH6uaAdL8GgIR0CRt16N2ki2dX2UKGgGR0BuTV85S3spaAdNIAFoCEdAkbgafe1rqXV9lChoBkdAblyoCuEEkmgHTRgBaAhHQJG4lQvYe1d1fZQoaAZHQHGVRtLteD5oB00NAWgIR0CRubOpsGgSdX2UKGgGR0BvoUiB5HEuaAdNFgFoCEdAkbr8S5AhS3V9lChoBkdAcUnbFS88LmgHS/RoCEdAkbssWbgCOnV9lChoBkdAcIqc4YJmd2gHTQ8BaAhHQJG7Szu4PPN1fZQoaAZHQHARPqkdmxtoB00jAWgIR0CRu9S9ugpSdX2UKGgGR0Bwjp5C4SYgaAdNIAFoCEdAkbwIUSIxg3V9lChoBkdAcEYHrhR64WgHTQsBaAhHQJG8J6t1ZDB1fZQoaAZHQHDJj4pMHr1oB00LAWgIR0CRvGEuxrzodX2UKGgGR0BvEYkC3gDSaAdNPQFoCEdAkb2Hh4t6HHV9lChoBkdAbXF+hGpdbGgHTSkBaAhHQJG+LDNyHVR1fZQoaAZHQE1MZhKDkENoB0vjaAhHQJG+lcKPXCl1fZQoaAZHQHC0cifQKKJoB00eAWgIR0CRvru3c580dX2UKGgGR0BxWcs6JZW8aAdNGwFoCEdAkb9TcIqsl3V9lChoBkdAcLoXoTwlSmgHTSIBaAhHQJHBAfbKzRh1fZQoaAZHQHGlws052hZoB00XAWgIR0CRwSQqZtvXdX2UKGgGR0BwkXCTEBKdaAdNAgFoCEdAkcK6x1PnCHV9lChoBkdAcJAQ+EAYHmgHTQUBaAhHQJHDGzPa+N91fZQoaAZHQHJIC7f51vFoB009AWgIR0CRw4WZqmCRdX2UKGgGR0BwompqASWaaAdNEgFoCEdAkcQRK6FuenV9lChoBkdAb74kzoEB82gHTQ8BaAhHQJHEKNMoMKF1fZQoaAZHQHCD3VoYekpoB00gAWgIR0CRxMiS7oStdX2UKGgGR0Bw6NgkTpPiaAdNKwFoCEdAkcVYgmqo63V9lChoBkdAcUfxkd3jdmgHS/toCEdAkcX/HHWBjHV9lChoBkdAb88uZCv5g2gHTYQDaAhHQJHHOI0qH451fZQoaAZHQHDL7dN34bloB00HAWgIR0CRx11mapgkdX2UKGgGR0BwmcRODaoNaAdNFQFoCEdAkcexDb8FZHV9lChoBkdAbNlZFocrAmgHTVMBaAhHQJHIno5ggHN1fZQoaAZHQGzeQNsnAqNoB00dAWgIR0CRy5ZbILgGdX2UKGgGR0BxLyY9gWrPaAdNYAFoCEdAkcwHLidauHV9lChoBkdAS456fJ3gUGgHS81oCEdAkcwfM4cWCXV9lChoBkdAb8VviLl3hWgHTS8BaAhHQJHMoraufVZ1fZQoaAZHQHBEqZ6Uqx1oB00nAWgIR0CRznqpLmITdX2UKGgGR0BufjnzQNTcaAdNEwFoCEdAkc+I9ovi+HV9lChoBkdAb/W9Zid8RmgHTQYBaAhHQJHP5sdkrgB1fZQoaAZHQHBW2T1TR6ZoB0v0aAhHQJHP8PNFBpp1fZQoaAZHQHLdestCiRJoB004AWgIR0CR0EPepGWldX2UKGgGR0BxIGeYlY2baAdL+2gIR0CR0iDYh+vydX2UKGgGR0Bx/u9tdiUgaAdNHgFoCEdAkdJDfm9xqHV9lChoBkdAcWyHJLdvbWgHTSABaAhHQJHTPskY4yZ1fZQoaAZHQGxeiUPhAGBoB00gAWgIR0CR05u9vjwQdX2UKGgGR0BwhUqTbFjvaAdNwwFoCEdAkdSd12aDw3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}