|
|
import torch |
|
|
import torch.nn as nn |
|
|
from transformers import PreTrainedModel, PretrainedConfig |
|
|
|
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
|
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): |
|
|
super().__init__() |
|
|
|
|
|
self.d_out = d_out |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = d_out // num_heads |
|
|
|
|
|
|
|
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) |
|
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) |
|
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) |
|
|
|
|
|
self.out_proj = nn.Linear(d_out, d_out) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
self.register_buffer("mask",torch.triu(torch.ones(context_length, context_length), diagonal=1)) |
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
b, num_tokens, d_in = x.shape |
|
|
|
|
|
|
|
|
keys = self.W_key(x) |
|
|
queries = self.W_query(x) |
|
|
values = self.W_value(x) |
|
|
|
|
|
|
|
|
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) |
|
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) |
|
|
values = values.view(b, num_tokens, self.num_heads, self.head_dim) |
|
|
|
|
|
|
|
|
keys = keys.transpose(1,2) |
|
|
queries = queries.transpose(1,2) |
|
|
values = values.transpose(1,2) |
|
|
|
|
|
|
|
|
attn_scores = queries @ keys.transpose(2,3) |
|
|
|
|
|
|
|
|
mask_bool = self.mask.bool()[:num_tokens, :num_tokens] |
|
|
attn_scores.masked_fill_(mask_bool, -torch.inf) |
|
|
|
|
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) |
|
|
attn_weights = self.dropout(attn_weights) |
|
|
|
|
|
|
|
|
ctx_vec = (attn_weights @ values).transpose(1, 2) |
|
|
|
|
|
|
|
|
ctx_vec = ctx_vec.contiguous().view(b, num_tokens, self.d_out) |
|
|
ctx_vec = self.out_proj(ctx_vec) |
|
|
|
|
|
return ctx_vec |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module): |
|
|
def __init__(self, emb_dim): |
|
|
super().__init__() |
|
|
self.eps = 1e-5 |
|
|
self.scale = nn.Parameter(torch.ones(emb_dim)) |
|
|
self.shift = nn.Parameter(torch.zeros(emb_dim)) |
|
|
|
|
|
def forward(self, x): |
|
|
mean = x.mean(dim=-1, keepdim=True) |
|
|
var = x.var(dim=-1, keepdim=True, unbiased=False) |
|
|
norm_x = (x - mean) / torch.sqrt(var + self.eps) |
|
|
return self.scale * norm_x + self.shift |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GeLU(nn.Module): |
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
|
|
|
def forward(self, x): |
|
|
return 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2.0/torch.pi)) * (x + 0.044715 * torch.pow(x,3)))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
self.layers = nn.Sequential( |
|
|
nn.Linear(cfg.emb_dim, 4*cfg.emb_dim), |
|
|
GeLU(), |
|
|
nn.Linear(4*cfg.emb_dim, cfg.emb_dim) |
|
|
) |
|
|
def forward(self, x): |
|
|
return self.layers(x) |
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
self.att = MultiheadAttention( |
|
|
d_in = cfg.emb_dim, |
|
|
d_out = cfg.emb_dim, |
|
|
context_length = cfg.context_length, |
|
|
dropout = cfg.drop_rate, |
|
|
num_heads = cfg.n_heads, |
|
|
qkv_bias = cfg.qkv_bias |
|
|
) |
|
|
self.ff = FeedForward(cfg) |
|
|
self.norm1 = LayerNorm(cfg.emb_dim) |
|
|
self.norm2 = LayerNorm(cfg.emb_dim) |
|
|
self.drop_shortcut = nn.Dropout(cfg.drop_rate) |
|
|
|
|
|
def forward(self, x): |
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = self.att(x) |
|
|
x = self.drop_shortcut(x) |
|
|
x = x + shortcut |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm2(x) |
|
|
x = self.ff(x) |
|
|
x = self.drop_shortcut(x) |
|
|
x = x + shortcut |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class TicketGPTConfig(PretrainedConfig): |
|
|
model_type = "ticket_gpt" |
|
|
def __init__(self, classes=8, context_length=1024, drop_rate=0.1, emb_dim=768, n_heads=12, n_layers=12, qkv_bias=True, vocab_size=50257, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.classes = classes |
|
|
self.context_length = context_length |
|
|
self.drop_rate = drop_rate |
|
|
self.emb_dim = emb_dim |
|
|
self.n_heads = n_heads |
|
|
self.n_layers = n_layers |
|
|
self.qkv_bias = qkv_bias |
|
|
self.vocab_size = vocab_size |
|
|
|
|
|
class TicketGPT( |
|
|
PreTrainedModel, |
|
|
): |
|
|
config_class = TicketGPTConfig |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.tok_emb = nn.Embedding(config.vocab_size, config.emb_dim) |
|
|
self.pos_emb = nn.Embedding(config.context_length, config.emb_dim) |
|
|
self.drop_emb = nn.Dropout(config.drop_rate) |
|
|
|
|
|
self.trf_blocks = nn.Sequential( |
|
|
*[TransformerBlock(config) for _ in range(config.n_layers)] |
|
|
) |
|
|
|
|
|
self.final_norm = LayerNorm(config.emb_dim) |
|
|
self.out_head = nn.Linear(config.emb_dim, config.classes, bias=True) |
|
|
|
|
|
def forward(self, x): |
|
|
batch_size, seq_len = x.shape |
|
|
tok_embeddings = self.tok_emb(x) |
|
|
pos_embeddings = self.pos_emb(torch.arange(seq_len, device=x.device)) |
|
|
x = tok_embeddings + pos_embeddings |
|
|
x = self.drop_emb(x) |
|
|
x = self.trf_blocks(x) |
|
|
x = self.final_norm(x) |
|
|
logits = self.out_head(x) |
|
|
return logits |
|
|
|
|
|
def predict(self, text, tokenizer, max_length=1024, pad_token_id=50256): |
|
|
lookup = { |
|
|
0:"Hardware", |
|
|
1:"HR Support", |
|
|
2:"Access", |
|
|
3:"Miscellaneous", |
|
|
4:"Storage", |
|
|
5:"Purchase", |
|
|
6:"Internal Project", |
|
|
7:"Administrative rights" |
|
|
} |
|
|
|
|
|
current_device = next(self.parameters()).device |
|
|
self.eval() |
|
|
|
|
|
|
|
|
input_ids = tokenizer.encode(text) |
|
|
supported_context_length = self.config.context_length |
|
|
|
|
|
|
|
|
input_ids = input_ids[:min(max_length, supported_context_length)] |
|
|
|
|
|
|
|
|
input_ids += [pad_token_id] * (max_length - len(input_ids)) |
|
|
input_tensor = torch.tensor(input_ids, device=current_device).unsqueeze(0) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
logits = self(input_tensor)[:, -1, :] |
|
|
predicted_label = torch.argmax(logits, dim=-1).item() |
|
|
|
|
|
|
|
|
return lookup[predicted_label] |
|
|
|