Fangliuwh commited on
Commit
7e6bff7
·
verified ·
1 Parent(s): 64a1857

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1735491903.ip-10-4-97-16 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1529580234fc1cc0ebe1e65fb5b98601bc41ac64f2ad69394676a283a25015e6
3
+ size 178117
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 10.45 +/- 5.29
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r Fangliuwh/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000962_3940352_reward_21.703.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed8e933fa944b0fda23d7aa2809ee3d7e94625b89038aa5e740e572344c5ef61
3
+ size 34929051
checkpoint_p0/checkpoint_000000491_2011136.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94a8569bf434e0a6ccf966aca68a1c144c233b8ae3fbd2dfa2e75cbf6c639716
3
+ size 34929477
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c1c2d3d7b34acc7eab6a1d3cd7c50d527e2483ec103be93d6ff5614fbeb4837
3
+ size 34929541
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/fsx/users/amzfang/rl_course/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
142
+ }
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8870c19d53315b693637b34adac5b26d9856643544f334bcc47b7b2c67254f0c
3
+ size 19676372
sf_log.txt ADDED
@@ -0,0 +1,839 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-29 17:05:13,620][45646] Saving configuration to /fsx/users/amzfang/rl_course/train_dir/default_experiment/config.json...
2
+ [2024-12-29 17:05:13,625][45646] Rollout worker 0 uses device cpu
3
+ [2024-12-29 17:05:13,625][45646] Rollout worker 1 uses device cpu
4
+ [2024-12-29 17:05:13,626][45646] Rollout worker 2 uses device cpu
5
+ [2024-12-29 17:05:13,626][45646] Rollout worker 3 uses device cpu
6
+ [2024-12-29 17:05:13,626][45646] Rollout worker 4 uses device cpu
7
+ [2024-12-29 17:05:13,627][45646] Rollout worker 5 uses device cpu
8
+ [2024-12-29 17:05:13,627][45646] Rollout worker 6 uses device cpu
9
+ [2024-12-29 17:05:13,628][45646] Rollout worker 7 uses device cpu
10
+ [2024-12-29 17:05:13,728][45646] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2024-12-29 17:05:13,729][45646] InferenceWorker_p0-w0: min num requests: 2
12
+ [2024-12-29 17:05:13,757][45646] Starting all processes...
13
+ [2024-12-29 17:05:13,757][45646] Starting process learner_proc0
14
+ [2024-12-29 17:05:13,878][45646] Starting all processes...
15
+ [2024-12-29 17:05:13,909][45646] Starting process inference_proc0-0
16
+ [2024-12-29 17:05:13,909][45646] Starting process rollout_proc0
17
+ [2024-12-29 17:05:13,909][45646] Starting process rollout_proc1
18
+ [2024-12-29 17:05:13,910][45646] Starting process rollout_proc2
19
+ [2024-12-29 17:05:13,910][45646] Starting process rollout_proc3
20
+ [2024-12-29 17:05:13,910][45646] Starting process rollout_proc4
21
+ [2024-12-29 17:05:13,911][45646] Starting process rollout_proc5
22
+ [2024-12-29 17:05:13,911][45646] Starting process rollout_proc6
23
+ [2024-12-29 17:05:13,912][45646] Starting process rollout_proc7
24
+ [2024-12-29 17:05:20,721][48101] Using GPUs [0] for process 0 (actually maps to GPUs [0])
25
+ [2024-12-29 17:05:20,721][48119] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5]
26
+ [2024-12-29 17:05:20,721][48114] Using GPUs [0] for process 0 (actually maps to GPUs [0])
27
+ [2024-12-29 17:05:20,721][48115] Worker 3 uses CPU cores [18, 19, 20, 21, 22, 23]
28
+ [2024-12-29 17:05:20,721][48116] Worker 1 uses CPU cores [6, 7, 8, 9, 10, 11]
29
+ [2024-12-29 17:05:20,721][48117] Worker 2 uses CPU cores [12, 13, 14, 15, 16, 17]
30
+ [2024-12-29 17:05:20,721][48118] Worker 4 uses CPU cores [24, 25, 26, 27, 28, 29]
31
+ [2024-12-29 17:05:20,721][48122] Worker 7 uses CPU cores [42, 43, 44, 45, 46, 47]
32
+ [2024-12-29 17:05:20,721][48121] Worker 6 uses CPU cores [36, 37, 38, 39, 40, 41]
33
+ [2024-12-29 17:05:20,721][48120] Worker 5 uses CPU cores [30, 31, 32, 33, 34, 35]
34
+ [2024-12-29 17:05:20,722][48101] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
35
+ [2024-12-29 17:05:20,722][48114] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
36
+ [2024-12-29 17:05:20,848][48101] Num visible devices: 1
37
+ [2024-12-29 17:05:20,865][48101] Starting seed is not provided
38
+ [2024-12-29 17:05:20,865][48101] Using GPUs [0] for process 0 (actually maps to GPUs [0])
39
+ [2024-12-29 17:05:20,865][48101] Initializing actor-critic model on device cuda:0
40
+ [2024-12-29 17:05:20,866][48101] RunningMeanStd input shape: (3, 72, 128)
41
+ [2024-12-29 17:05:20,867][48101] RunningMeanStd input shape: (1,)
42
+ [2024-12-29 17:05:20,881][48114] Num visible devices: 1
43
+ [2024-12-29 17:05:20,886][48101] ConvEncoder: input_channels=3
44
+ [2024-12-29 17:05:21,144][48101] Conv encoder output size: 512
45
+ [2024-12-29 17:05:21,144][48101] Policy head output size: 512
46
+ [2024-12-29 17:05:21,193][48101] Created Actor Critic model with architecture:
47
+ [2024-12-29 17:05:21,193][48101] ActorCriticSharedWeights(
48
+ (obs_normalizer): ObservationNormalizer(
49
+ (running_mean_std): RunningMeanStdDictInPlace(
50
+ (running_mean_std): ModuleDict(
51
+ (obs): RunningMeanStdInPlace()
52
+ )
53
+ )
54
+ )
55
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
56
+ (encoder): VizdoomEncoder(
57
+ (basic_encoder): ConvEncoder(
58
+ (enc): RecursiveScriptModule(
59
+ original_name=ConvEncoderImpl
60
+ (conv_head): RecursiveScriptModule(
61
+ original_name=Sequential
62
+ (0): RecursiveScriptModule(original_name=Conv2d)
63
+ (1): RecursiveScriptModule(original_name=ELU)
64
+ (2): RecursiveScriptModule(original_name=Conv2d)
65
+ (3): RecursiveScriptModule(original_name=ELU)
66
+ (4): RecursiveScriptModule(original_name=Conv2d)
67
+ (5): RecursiveScriptModule(original_name=ELU)
68
+ )
69
+ (mlp_layers): RecursiveScriptModule(
70
+ original_name=Sequential
71
+ (0): RecursiveScriptModule(original_name=Linear)
72
+ (1): RecursiveScriptModule(original_name=ELU)
73
+ )
74
+ )
75
+ )
76
+ )
77
+ (core): ModelCoreRNN(
78
+ (core): GRU(512, 512)
79
+ )
80
+ (decoder): MlpDecoder(
81
+ (mlp): Identity()
82
+ )
83
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
84
+ (action_parameterization): ActionParameterizationDefault(
85
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
86
+ )
87
+ )
88
+ [2024-12-29 17:05:21,762][48101] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2024-12-29 17:05:27,792][48101] No checkpoints found
90
+ [2024-12-29 17:05:27,793][48101] Did not load from checkpoint, starting from scratch!
91
+ [2024-12-29 17:05:27,794][48101] Initialized policy 0 weights for model version 0
92
+ [2024-12-29 17:05:27,797][48101] LearnerWorker_p0 finished initialization!
93
+ [2024-12-29 17:05:27,797][48101] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2024-12-29 17:05:28,222][48114] RunningMeanStd input shape: (3, 72, 128)
95
+ [2024-12-29 17:05:28,223][48114] RunningMeanStd input shape: (1,)
96
+ [2024-12-29 17:05:28,235][48114] ConvEncoder: input_channels=3
97
+ [2024-12-29 17:05:28,331][48114] Conv encoder output size: 512
98
+ [2024-12-29 17:05:28,331][48114] Policy head output size: 512
99
+ [2024-12-29 17:05:28,372][45646] Inference worker 0-0 is ready!
100
+ [2024-12-29 17:05:28,373][45646] All inference workers are ready! Signal rollout workers to start!
101
+ [2024-12-29 17:05:28,403][48117] Doom resolution: 160x120, resize resolution: (128, 72)
102
+ [2024-12-29 17:05:28,403][48119] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2024-12-29 17:05:28,403][48118] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2024-12-29 17:05:28,403][48120] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2024-12-29 17:05:28,404][48115] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2024-12-29 17:05:28,404][48116] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2024-12-29 17:05:28,404][48121] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2024-12-29 17:05:28,404][48122] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2024-12-29 17:05:28,732][45646] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
110
+ [2024-12-29 17:05:28,833][48116] Decorrelating experience for 0 frames...
111
+ [2024-12-29 17:05:28,995][48118] Decorrelating experience for 0 frames...
112
+ [2024-12-29 17:05:28,997][48117] Decorrelating experience for 0 frames...
113
+ [2024-12-29 17:05:29,049][48116] Decorrelating experience for 32 frames...
114
+ [2024-12-29 17:05:29,223][48118] Decorrelating experience for 32 frames...
115
+ [2024-12-29 17:05:29,226][48117] Decorrelating experience for 32 frames...
116
+ [2024-12-29 17:05:29,259][48120] Decorrelating experience for 0 frames...
117
+ [2024-12-29 17:05:29,495][48120] Decorrelating experience for 32 frames...
118
+ [2024-12-29 17:05:29,498][48116] Decorrelating experience for 64 frames...
119
+ [2024-12-29 17:05:29,520][48118] Decorrelating experience for 64 frames...
120
+ [2024-12-29 17:05:29,523][48115] Decorrelating experience for 0 frames...
121
+ [2024-12-29 17:05:29,748][48115] Decorrelating experience for 32 frames...
122
+ [2024-12-29 17:05:29,750][48116] Decorrelating experience for 96 frames...
123
+ [2024-12-29 17:05:29,773][48118] Decorrelating experience for 96 frames...
124
+ [2024-12-29 17:05:29,777][48120] Decorrelating experience for 64 frames...
125
+ [2024-12-29 17:05:30,029][48117] Decorrelating experience for 64 frames...
126
+ [2024-12-29 17:05:30,039][48120] Decorrelating experience for 96 frames...
127
+ [2024-12-29 17:05:30,042][48115] Decorrelating experience for 64 frames...
128
+ [2024-12-29 17:05:30,278][48117] Decorrelating experience for 96 frames...
129
+ [2024-12-29 17:05:30,298][48115] Decorrelating experience for 96 frames...
130
+ [2024-12-29 17:05:32,475][48101] Signal inference workers to stop experience collection...
131
+ [2024-12-29 17:05:32,479][48114] InferenceWorker_p0-w0: stopping experience collection
132
+ [2024-12-29 17:05:33,721][45646] Heartbeat connected on Batcher_0
133
+ [2024-12-29 17:05:33,728][45646] Heartbeat connected on InferenceWorker_p0-w0
134
+ [2024-12-29 17:05:33,732][45646] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 4.8. Samples: 24. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
135
+ [2024-12-29 17:05:33,733][45646] Avg episode reward: [(0, '3.089')]
136
+ [2024-12-29 17:05:33,736][45646] Heartbeat connected on RolloutWorker_w1
137
+ [2024-12-29 17:05:33,739][45646] Heartbeat connected on RolloutWorker_w2
138
+ [2024-12-29 17:05:33,743][45646] Heartbeat connected on RolloutWorker_w3
139
+ [2024-12-29 17:05:33,746][45646] Heartbeat connected on RolloutWorker_w4
140
+ [2024-12-29 17:05:33,749][45646] Heartbeat connected on RolloutWorker_w5
141
+ [2024-12-29 17:05:34,723][48101] Signal inference workers to resume experience collection...
142
+ [2024-12-29 17:05:34,723][48114] InferenceWorker_p0-w0: resuming experience collection
143
+ [2024-12-29 17:05:34,932][45646] Heartbeat connected on LearnerWorker_p0
144
+ [2024-12-29 17:05:36,234][48114] Updated weights for policy 0, policy_version 10 (0.0103)
145
+ [2024-12-29 17:05:38,072][48114] Updated weights for policy 0, policy_version 20 (0.0006)
146
+ [2024-12-29 17:05:38,732][45646] Fps is (10 sec: 9420.8, 60 sec: 9420.8, 300 sec: 9420.8). Total num frames: 94208. Throughput: 0: 1682.2. Samples: 16822. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
147
+ [2024-12-29 17:05:38,733][45646] Avg episode reward: [(0, '4.416')]
148
+ [2024-12-29 17:05:39,899][48114] Updated weights for policy 0, policy_version 30 (0.0006)
149
+ [2024-12-29 17:05:41,723][48114] Updated weights for policy 0, policy_version 40 (0.0006)
150
+ [2024-12-29 17:05:43,550][48114] Updated weights for policy 0, policy_version 50 (0.0006)
151
+ [2024-12-29 17:05:43,732][45646] Fps is (10 sec: 20480.1, 60 sec: 13653.4, 300 sec: 13653.4). Total num frames: 204800. Throughput: 0: 3367.3. Samples: 50510. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
152
+ [2024-12-29 17:05:43,733][45646] Avg episode reward: [(0, '4.575')]
153
+ [2024-12-29 17:05:43,735][48101] Saving new best policy, reward=4.575!
154
+ [2024-12-29 17:05:45,392][48114] Updated weights for policy 0, policy_version 60 (0.0006)
155
+ [2024-12-29 17:05:47,224][48114] Updated weights for policy 0, policy_version 70 (0.0006)
156
+ [2024-12-29 17:05:48,732][45646] Fps is (10 sec: 22527.9, 60 sec: 15974.4, 300 sec: 15974.4). Total num frames: 319488. Throughput: 0: 3365.5. Samples: 67310. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
157
+ [2024-12-29 17:05:48,733][45646] Avg episode reward: [(0, '4.394')]
158
+ [2024-12-29 17:05:49,059][48114] Updated weights for policy 0, policy_version 80 (0.0006)
159
+ [2024-12-29 17:05:50,887][48114] Updated weights for policy 0, policy_version 90 (0.0006)
160
+ [2024-12-29 17:05:52,700][48114] Updated weights for policy 0, policy_version 100 (0.0006)
161
+ [2024-12-29 17:05:53,732][45646] Fps is (10 sec: 22528.0, 60 sec: 17203.2, 300 sec: 17203.2). Total num frames: 430080. Throughput: 0: 4037.2. Samples: 100930. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
162
+ [2024-12-29 17:05:53,733][45646] Avg episode reward: [(0, '4.337')]
163
+ [2024-12-29 17:05:54,527][48114] Updated weights for policy 0, policy_version 110 (0.0006)
164
+ [2024-12-29 17:05:56,357][48114] Updated weights for policy 0, policy_version 120 (0.0006)
165
+ [2024-12-29 17:05:58,176][48114] Updated weights for policy 0, policy_version 130 (0.0006)
166
+ [2024-12-29 17:05:58,732][45646] Fps is (10 sec: 22528.1, 60 sec: 18159.0, 300 sec: 18159.0). Total num frames: 544768. Throughput: 0: 4488.1. Samples: 134642. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
167
+ [2024-12-29 17:05:58,733][45646] Avg episode reward: [(0, '4.428')]
168
+ [2024-12-29 17:05:59,999][48114] Updated weights for policy 0, policy_version 140 (0.0006)
169
+ [2024-12-29 17:06:01,829][48114] Updated weights for policy 0, policy_version 150 (0.0006)
170
+ [2024-12-29 17:06:03,661][48114] Updated weights for policy 0, policy_version 160 (0.0006)
171
+ [2024-12-29 17:06:03,732][45646] Fps is (10 sec: 22528.0, 60 sec: 18724.6, 300 sec: 18724.6). Total num frames: 655360. Throughput: 0: 4329.8. Samples: 151542. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
172
+ [2024-12-29 17:06:03,733][45646] Avg episode reward: [(0, '4.541')]
173
+ [2024-12-29 17:06:05,490][48114] Updated weights for policy 0, policy_version 170 (0.0006)
174
+ [2024-12-29 17:06:07,316][48114] Updated weights for policy 0, policy_version 180 (0.0006)
175
+ [2024-12-29 17:06:08,732][45646] Fps is (10 sec: 22527.9, 60 sec: 19251.2, 300 sec: 19251.2). Total num frames: 770048. Throughput: 0: 4631.2. Samples: 185248. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
176
+ [2024-12-29 17:06:08,733][45646] Avg episode reward: [(0, '5.057')]
177
+ [2024-12-29 17:06:08,733][48101] Saving new best policy, reward=5.057!
178
+ [2024-12-29 17:06:09,134][48114] Updated weights for policy 0, policy_version 190 (0.0006)
179
+ [2024-12-29 17:06:10,941][48114] Updated weights for policy 0, policy_version 200 (0.0006)
180
+ [2024-12-29 17:06:12,748][48114] Updated weights for policy 0, policy_version 210 (0.0006)
181
+ [2024-12-29 17:06:13,732][45646] Fps is (10 sec: 22528.0, 60 sec: 19569.8, 300 sec: 19569.8). Total num frames: 880640. Throughput: 0: 4866.5. Samples: 218994. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
182
+ [2024-12-29 17:06:13,733][45646] Avg episode reward: [(0, '5.207')]
183
+ [2024-12-29 17:06:13,735][48101] Saving new best policy, reward=5.207!
184
+ [2024-12-29 17:06:14,567][48114] Updated weights for policy 0, policy_version 220 (0.0006)
185
+ [2024-12-29 17:06:16,382][48114] Updated weights for policy 0, policy_version 230 (0.0006)
186
+ [2024-12-29 17:06:18,200][48114] Updated weights for policy 0, policy_version 240 (0.0006)
187
+ [2024-12-29 17:06:18,732][45646] Fps is (10 sec: 22118.3, 60 sec: 19824.6, 300 sec: 19824.6). Total num frames: 991232. Throughput: 0: 5240.8. Samples: 235862. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
188
+ [2024-12-29 17:06:18,733][45646] Avg episode reward: [(0, '5.699')]
189
+ [2024-12-29 17:06:18,733][48101] Saving new best policy, reward=5.699!
190
+ [2024-12-29 17:06:20,011][48114] Updated weights for policy 0, policy_version 250 (0.0006)
191
+ [2024-12-29 17:06:21,826][48114] Updated weights for policy 0, policy_version 260 (0.0006)
192
+ [2024-12-29 17:06:23,641][48114] Updated weights for policy 0, policy_version 270 (0.0006)
193
+ [2024-12-29 17:06:23,732][45646] Fps is (10 sec: 22527.9, 60 sec: 20107.6, 300 sec: 20107.6). Total num frames: 1105920. Throughput: 0: 5618.3. Samples: 269646. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
194
+ [2024-12-29 17:06:23,733][45646] Avg episode reward: [(0, '8.082')]
195
+ [2024-12-29 17:06:23,735][48101] Saving new best policy, reward=8.082!
196
+ [2024-12-29 17:06:25,459][48114] Updated weights for policy 0, policy_version 280 (0.0006)
197
+ [2024-12-29 17:06:27,279][48114] Updated weights for policy 0, policy_version 290 (0.0006)
198
+ [2024-12-29 17:06:28,732][45646] Fps is (10 sec: 22528.1, 60 sec: 20275.2, 300 sec: 20275.2). Total num frames: 1216512. Throughput: 0: 5621.2. Samples: 303464. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
199
+ [2024-12-29 17:06:28,733][45646] Avg episode reward: [(0, '7.501')]
200
+ [2024-12-29 17:06:29,109][48114] Updated weights for policy 0, policy_version 300 (0.0006)
201
+ [2024-12-29 17:06:30,924][48114] Updated weights for policy 0, policy_version 310 (0.0006)
202
+ [2024-12-29 17:06:32,754][48114] Updated weights for policy 0, policy_version 320 (0.0006)
203
+ [2024-12-29 17:06:33,732][45646] Fps is (10 sec: 22528.1, 60 sec: 22186.7, 300 sec: 20480.0). Total num frames: 1331200. Throughput: 0: 5623.7. Samples: 320378. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
204
+ [2024-12-29 17:06:33,733][45646] Avg episode reward: [(0, '7.499')]
205
+ [2024-12-29 17:06:34,569][48114] Updated weights for policy 0, policy_version 330 (0.0006)
206
+ [2024-12-29 17:06:36,385][48114] Updated weights for policy 0, policy_version 340 (0.0006)
207
+ [2024-12-29 17:06:38,199][48114] Updated weights for policy 0, policy_version 350 (0.0006)
208
+ [2024-12-29 17:06:38,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22459.7, 300 sec: 20597.0). Total num frames: 1441792. Throughput: 0: 5628.5. Samples: 354212. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
209
+ [2024-12-29 17:06:38,733][45646] Avg episode reward: [(0, '9.542')]
210
+ [2024-12-29 17:06:38,733][48101] Saving new best policy, reward=9.542!
211
+ [2024-12-29 17:06:40,007][48114] Updated weights for policy 0, policy_version 360 (0.0006)
212
+ [2024-12-29 17:06:41,814][48114] Updated weights for policy 0, policy_version 370 (0.0006)
213
+ [2024-12-29 17:06:43,619][48114] Updated weights for policy 0, policy_version 380 (0.0006)
214
+ [2024-12-29 17:06:43,732][45646] Fps is (10 sec: 22527.9, 60 sec: 22528.0, 300 sec: 20753.1). Total num frames: 1556480. Throughput: 0: 5633.8. Samples: 388162. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
215
+ [2024-12-29 17:06:43,733][45646] Avg episode reward: [(0, '10.229')]
216
+ [2024-12-29 17:06:43,735][48101] Saving new best policy, reward=10.229!
217
+ [2024-12-29 17:06:45,435][48114] Updated weights for policy 0, policy_version 390 (0.0006)
218
+ [2024-12-29 17:06:47,235][48114] Updated weights for policy 0, policy_version 400 (0.0006)
219
+ [2024-12-29 17:06:48,732][45646] Fps is (10 sec: 22937.5, 60 sec: 22528.0, 300 sec: 20889.6). Total num frames: 1671168. Throughput: 0: 5634.5. Samples: 405096. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
220
+ [2024-12-29 17:06:48,733][45646] Avg episode reward: [(0, '13.707')]
221
+ [2024-12-29 17:06:48,733][48101] Saving new best policy, reward=13.707!
222
+ [2024-12-29 17:06:49,037][48114] Updated weights for policy 0, policy_version 410 (0.0006)
223
+ [2024-12-29 17:06:50,839][48114] Updated weights for policy 0, policy_version 420 (0.0006)
224
+ [2024-12-29 17:06:52,633][48114] Updated weights for policy 0, policy_version 430 (0.0006)
225
+ [2024-12-29 17:06:53,732][45646] Fps is (10 sec: 22528.1, 60 sec: 22528.0, 300 sec: 20961.9). Total num frames: 1781760. Throughput: 0: 5641.8. Samples: 439130. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
226
+ [2024-12-29 17:06:53,733][45646] Avg episode reward: [(0, '14.863')]
227
+ [2024-12-29 17:06:53,737][48101] Saving new best policy, reward=14.863!
228
+ [2024-12-29 17:06:54,445][48114] Updated weights for policy 0, policy_version 440 (0.0006)
229
+ [2024-12-29 17:06:56,245][48114] Updated weights for policy 0, policy_version 450 (0.0006)
230
+ [2024-12-29 17:06:58,054][48114] Updated weights for policy 0, policy_version 460 (0.0006)
231
+ [2024-12-29 17:06:58,732][45646] Fps is (10 sec: 22528.1, 60 sec: 22528.0, 300 sec: 21071.7). Total num frames: 1896448. Throughput: 0: 5647.3. Samples: 473122. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
232
+ [2024-12-29 17:06:58,733][45646] Avg episode reward: [(0, '14.178')]
233
+ [2024-12-29 17:06:59,866][48114] Updated weights for policy 0, policy_version 470 (0.0006)
234
+ [2024-12-29 17:07:01,672][48114] Updated weights for policy 0, policy_version 480 (0.0006)
235
+ [2024-12-29 17:07:03,478][48114] Updated weights for policy 0, policy_version 490 (0.0006)
236
+ [2024-12-29 17:07:03,732][45646] Fps is (10 sec: 22937.6, 60 sec: 22596.3, 300 sec: 21169.9). Total num frames: 2011136. Throughput: 0: 5649.8. Samples: 490102. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
237
+ [2024-12-29 17:07:03,733][45646] Avg episode reward: [(0, '16.228')]
238
+ [2024-12-29 17:07:03,735][48101] Saving /fsx/users/amzfang/rl_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000491_2011136.pth...
239
+ [2024-12-29 17:07:03,787][48101] Saving new best policy, reward=16.228!
240
+ [2024-12-29 17:07:05,303][48114] Updated weights for policy 0, policy_version 500 (0.0006)
241
+ [2024-12-29 17:07:07,103][48114] Updated weights for policy 0, policy_version 510 (0.0006)
242
+ [2024-12-29 17:07:08,732][45646] Fps is (10 sec: 22937.6, 60 sec: 22596.3, 300 sec: 21258.2). Total num frames: 2125824. Throughput: 0: 5654.9. Samples: 524116. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
243
+ [2024-12-29 17:07:08,733][45646] Avg episode reward: [(0, '16.025')]
244
+ [2024-12-29 17:07:08,917][48114] Updated weights for policy 0, policy_version 520 (0.0006)
245
+ [2024-12-29 17:07:10,729][48114] Updated weights for policy 0, policy_version 530 (0.0006)
246
+ [2024-12-29 17:07:12,539][48114] Updated weights for policy 0, policy_version 540 (0.0006)
247
+ [2024-12-29 17:07:13,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22596.3, 300 sec: 21299.2). Total num frames: 2236416. Throughput: 0: 5659.4. Samples: 558138. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
248
+ [2024-12-29 17:07:13,733][45646] Avg episode reward: [(0, '17.471')]
249
+ [2024-12-29 17:07:13,735][48101] Saving new best policy, reward=17.471!
250
+ [2024-12-29 17:07:14,348][48114] Updated weights for policy 0, policy_version 550 (0.0006)
251
+ [2024-12-29 17:07:16,151][48114] Updated weights for policy 0, policy_version 560 (0.0006)
252
+ [2024-12-29 17:07:17,950][48114] Updated weights for policy 0, policy_version 570 (0.0006)
253
+ [2024-12-29 17:07:18,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22664.6, 300 sec: 21373.7). Total num frames: 2351104. Throughput: 0: 5660.8. Samples: 575112. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
254
+ [2024-12-29 17:07:18,733][45646] Avg episode reward: [(0, '16.219')]
255
+ [2024-12-29 17:07:19,754][48114] Updated weights for policy 0, policy_version 580 (0.0006)
256
+ [2024-12-29 17:07:21,547][48114] Updated weights for policy 0, policy_version 590 (0.0006)
257
+ [2024-12-29 17:07:23,345][48114] Updated weights for policy 0, policy_version 600 (0.0006)
258
+ [2024-12-29 17:07:23,732][45646] Fps is (10 sec: 22937.6, 60 sec: 22664.5, 300 sec: 21441.7). Total num frames: 2465792. Throughput: 0: 5667.3. Samples: 609240. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
259
+ [2024-12-29 17:07:23,733][45646] Avg episode reward: [(0, '18.760')]
260
+ [2024-12-29 17:07:23,735][48101] Saving new best policy, reward=18.760!
261
+ [2024-12-29 17:07:25,160][48114] Updated weights for policy 0, policy_version 610 (0.0006)
262
+ [2024-12-29 17:07:26,963][48114] Updated weights for policy 0, policy_version 620 (0.0006)
263
+ [2024-12-29 17:07:28,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22664.5, 300 sec: 21469.9). Total num frames: 2576384. Throughput: 0: 5670.9. Samples: 643354. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
264
+ [2024-12-29 17:07:28,733][45646] Avg episode reward: [(0, '18.920')]
265
+ [2024-12-29 17:07:28,733][48101] Saving new best policy, reward=18.920!
266
+ [2024-12-29 17:07:28,825][48114] Updated weights for policy 0, policy_version 630 (0.0006)
267
+ [2024-12-29 17:07:30,580][48114] Updated weights for policy 0, policy_version 640 (0.0006)
268
+ [2024-12-29 17:07:32,382][48114] Updated weights for policy 0, policy_version 650 (0.0006)
269
+ [2024-12-29 17:07:33,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22664.5, 300 sec: 21528.6). Total num frames: 2691072. Throughput: 0: 5672.5. Samples: 660358. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
270
+ [2024-12-29 17:07:33,733][45646] Avg episode reward: [(0, '19.076')]
271
+ [2024-12-29 17:07:33,735][48101] Saving new best policy, reward=19.076!
272
+ [2024-12-29 17:07:34,197][48114] Updated weights for policy 0, policy_version 660 (0.0006)
273
+ [2024-12-29 17:07:36,005][48114] Updated weights for policy 0, policy_version 670 (0.0006)
274
+ [2024-12-29 17:07:37,805][48114] Updated weights for policy 0, policy_version 680 (0.0006)
275
+ [2024-12-29 17:07:38,732][45646] Fps is (10 sec: 22937.5, 60 sec: 22732.8, 300 sec: 21582.8). Total num frames: 2805760. Throughput: 0: 5673.0. Samples: 694414. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
276
+ [2024-12-29 17:07:38,733][45646] Avg episode reward: [(0, '17.664')]
277
+ [2024-12-29 17:07:39,603][48114] Updated weights for policy 0, policy_version 690 (0.0006)
278
+ [2024-12-29 17:07:41,405][48114] Updated weights for policy 0, policy_version 700 (0.0006)
279
+ [2024-12-29 17:07:43,189][48114] Updated weights for policy 0, policy_version 710 (0.0006)
280
+ [2024-12-29 17:07:43,732][45646] Fps is (10 sec: 22528.1, 60 sec: 22664.5, 300 sec: 21602.6). Total num frames: 2916352. Throughput: 0: 5674.3. Samples: 728466. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
281
+ [2024-12-29 17:07:43,733][45646] Avg episode reward: [(0, '20.509')]
282
+ [2024-12-29 17:07:43,735][48101] Saving new best policy, reward=20.509!
283
+ [2024-12-29 17:07:44,989][48114] Updated weights for policy 0, policy_version 720 (0.0006)
284
+ [2024-12-29 17:07:46,791][48114] Updated weights for policy 0, policy_version 730 (0.0006)
285
+ [2024-12-29 17:07:48,594][48114] Updated weights for policy 0, policy_version 740 (0.0006)
286
+ [2024-12-29 17:07:48,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22664.5, 300 sec: 21650.3). Total num frames: 3031040. Throughput: 0: 5675.7. Samples: 745510. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
287
+ [2024-12-29 17:07:48,733][45646] Avg episode reward: [(0, '21.202')]
288
+ [2024-12-29 17:07:48,733][48101] Saving new best policy, reward=21.202!
289
+ [2024-12-29 17:07:50,413][48114] Updated weights for policy 0, policy_version 750 (0.0006)
290
+ [2024-12-29 17:07:52,209][48114] Updated weights for policy 0, policy_version 760 (0.0006)
291
+ [2024-12-29 17:07:53,732][45646] Fps is (10 sec: 22937.6, 60 sec: 22732.8, 300 sec: 21694.7). Total num frames: 3145728. Throughput: 0: 5677.6. Samples: 779610. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
292
+ [2024-12-29 17:07:53,733][45646] Avg episode reward: [(0, '20.980')]
293
+ [2024-12-29 17:07:54,016][48114] Updated weights for policy 0, policy_version 770 (0.0006)
294
+ [2024-12-29 17:07:55,815][48114] Updated weights for policy 0, policy_version 780 (0.0006)
295
+ [2024-12-29 17:07:57,614][48114] Updated weights for policy 0, policy_version 790 (0.0006)
296
+ [2024-12-29 17:07:58,732][45646] Fps is (10 sec: 22937.6, 60 sec: 22732.8, 300 sec: 21736.1). Total num frames: 3260416. Throughput: 0: 5678.4. Samples: 813668. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
297
+ [2024-12-29 17:07:58,733][45646] Avg episode reward: [(0, '20.302')]
298
+ [2024-12-29 17:07:59,425][48114] Updated weights for policy 0, policy_version 800 (0.0006)
299
+ [2024-12-29 17:08:01,225][48114] Updated weights for policy 0, policy_version 810 (0.0006)
300
+ [2024-12-29 17:08:03,026][48114] Updated weights for policy 0, policy_version 820 (0.0006)
301
+ [2024-12-29 17:08:03,732][45646] Fps is (10 sec: 22527.9, 60 sec: 22664.5, 300 sec: 21748.4). Total num frames: 3371008. Throughput: 0: 5679.9. Samples: 830710. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
302
+ [2024-12-29 17:08:03,733][45646] Avg episode reward: [(0, '19.765')]
303
+ [2024-12-29 17:08:04,827][48114] Updated weights for policy 0, policy_version 830 (0.0006)
304
+ [2024-12-29 17:08:06,621][48114] Updated weights for policy 0, policy_version 840 (0.0006)
305
+ [2024-12-29 17:08:08,431][48114] Updated weights for policy 0, policy_version 850 (0.0006)
306
+ [2024-12-29 17:08:08,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22664.5, 300 sec: 21785.6). Total num frames: 3485696. Throughput: 0: 5677.6. Samples: 864732. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
307
+ [2024-12-29 17:08:08,733][45646] Avg episode reward: [(0, '19.344')]
308
+ [2024-12-29 17:08:10,247][48114] Updated weights for policy 0, policy_version 860 (0.0006)
309
+ [2024-12-29 17:08:12,050][48114] Updated weights for policy 0, policy_version 870 (0.0006)
310
+ [2024-12-29 17:08:13,732][45646] Fps is (10 sec: 22937.7, 60 sec: 22732.8, 300 sec: 21820.5). Total num frames: 3600384. Throughput: 0: 5676.9. Samples: 898816. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
311
+ [2024-12-29 17:08:13,733][45646] Avg episode reward: [(0, '20.916')]
312
+ [2024-12-29 17:08:13,862][48114] Updated weights for policy 0, policy_version 880 (0.0006)
313
+ [2024-12-29 17:08:15,667][48114] Updated weights for policy 0, policy_version 890 (0.0006)
314
+ [2024-12-29 17:08:17,469][48114] Updated weights for policy 0, policy_version 900 (0.0006)
315
+ [2024-12-29 17:08:18,732][45646] Fps is (10 sec: 22937.7, 60 sec: 22732.8, 300 sec: 21853.4). Total num frames: 3715072. Throughput: 0: 5677.1. Samples: 915826. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
316
+ [2024-12-29 17:08:18,733][45646] Avg episode reward: [(0, '20.260')]
317
+ [2024-12-29 17:08:19,278][48114] Updated weights for policy 0, policy_version 910 (0.0006)
318
+ [2024-12-29 17:08:21,100][48114] Updated weights for policy 0, policy_version 920 (0.0006)
319
+ [2024-12-29 17:08:22,903][48114] Updated weights for policy 0, policy_version 930 (0.0006)
320
+ [2024-12-29 17:08:23,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22664.5, 300 sec: 21860.9). Total num frames: 3825664. Throughput: 0: 5675.3. Samples: 949802. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
321
+ [2024-12-29 17:08:23,733][45646] Avg episode reward: [(0, '20.878')]
322
+ [2024-12-29 17:08:24,714][48114] Updated weights for policy 0, policy_version 940 (0.0006)
323
+ [2024-12-29 17:08:26,518][48114] Updated weights for policy 0, policy_version 950 (0.0006)
324
+ [2024-12-29 17:08:28,315][48114] Updated weights for policy 0, policy_version 960 (0.0006)
325
+ [2024-12-29 17:08:28,732][45646] Fps is (10 sec: 22528.0, 60 sec: 22732.8, 300 sec: 21890.8). Total num frames: 3940352. Throughput: 0: 5676.0. Samples: 983884. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
326
+ [2024-12-29 17:08:28,733][45646] Avg episode reward: [(0, '21.703')]
327
+ [2024-12-29 17:08:28,733][48101] Saving new best policy, reward=21.703!
328
+ [2024-12-29 17:08:30,110][48114] Updated weights for policy 0, policy_version 970 (0.0006)
329
+ [2024-12-29 17:08:31,545][48101] Stopping Batcher_0...
330
+ [2024-12-29 17:08:31,546][48101] Loop batcher_evt_loop terminating...
331
+ [2024-12-29 17:08:31,545][45646] Component Batcher_0 stopped!
332
+ [2024-12-29 17:08:31,546][48101] Saving /fsx/users/amzfang/rl_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
333
+ [2024-12-29 17:08:31,546][45646] Component RolloutWorker_w0 process died already! Don't wait for it.
334
+ [2024-12-29 17:08:31,547][45646] Component RolloutWorker_w6 process died already! Don't wait for it.
335
+ [2024-12-29 17:08:31,547][45646] Component RolloutWorker_w7 process died already! Don't wait for it.
336
+ [2024-12-29 17:08:31,576][48114] Weights refcount: 2 0
337
+ [2024-12-29 17:08:31,577][48114] Stopping InferenceWorker_p0-w0...
338
+ [2024-12-29 17:08:31,577][48114] Loop inference_proc0-0_evt_loop terminating...
339
+ [2024-12-29 17:08:31,577][45646] Component InferenceWorker_p0-w0 stopped!
340
+ [2024-12-29 17:08:31,584][45646] Component RolloutWorker_w4 stopped!
341
+ [2024-12-29 17:08:31,584][48118] Stopping RolloutWorker_w4...
342
+ [2024-12-29 17:08:31,585][48118] Loop rollout_proc4_evt_loop terminating...
343
+ [2024-12-29 17:08:31,585][45646] Component RolloutWorker_w5 stopped!
344
+ [2024-12-29 17:08:31,585][48120] Stopping RolloutWorker_w5...
345
+ [2024-12-29 17:08:31,586][48120] Loop rollout_proc5_evt_loop terminating...
346
+ [2024-12-29 17:08:31,587][45646] Component RolloutWorker_w3 stopped!
347
+ [2024-12-29 17:08:31,587][48115] Stopping RolloutWorker_w3...
348
+ [2024-12-29 17:08:31,588][45646] Component RolloutWorker_w2 stopped!
349
+ [2024-12-29 17:08:31,588][48115] Loop rollout_proc3_evt_loop terminating...
350
+ [2024-12-29 17:08:31,588][48117] Stopping RolloutWorker_w2...
351
+ [2024-12-29 17:08:31,589][48117] Loop rollout_proc2_evt_loop terminating...
352
+ [2024-12-29 17:08:31,591][45646] Component RolloutWorker_w1 stopped!
353
+ [2024-12-29 17:08:31,591][48116] Stopping RolloutWorker_w1...
354
+ [2024-12-29 17:08:31,591][48116] Loop rollout_proc1_evt_loop terminating...
355
+ [2024-12-29 17:08:31,597][48101] Saving /fsx/users/amzfang/rl_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
356
+ [2024-12-29 17:08:31,652][48101] Stopping LearnerWorker_p0...
357
+ [2024-12-29 17:08:31,653][48101] Loop learner_proc0_evt_loop terminating...
358
+ [2024-12-29 17:08:31,652][45646] Component LearnerWorker_p0 stopped!
359
+ [2024-12-29 17:08:31,653][45646] Waiting for process learner_proc0 to stop...
360
+ [2024-12-29 17:08:32,504][45646] Waiting for process inference_proc0-0 to join...
361
+ [2024-12-29 17:08:32,505][45646] Waiting for process rollout_proc0 to join...
362
+ [2024-12-29 17:08:32,505][45646] Waiting for process rollout_proc1 to join...
363
+ [2024-12-29 17:08:32,506][45646] Waiting for process rollout_proc2 to join...
364
+ [2024-12-29 17:08:32,506][45646] Waiting for process rollout_proc3 to join...
365
+ [2024-12-29 17:08:32,507][45646] Waiting for process rollout_proc4 to join...
366
+ [2024-12-29 17:08:32,507][45646] Waiting for process rollout_proc5 to join...
367
+ [2024-12-29 17:08:32,508][45646] Waiting for process rollout_proc6 to join...
368
+ [2024-12-29 17:08:32,508][45646] Waiting for process rollout_proc7 to join...
369
+ [2024-12-29 17:08:32,508][45646] Batcher 0 profile tree view:
370
+ batching: 11.6411, releasing_batches: 0.0096
371
+ [2024-12-29 17:08:32,509][45646] InferenceWorker_p0-w0 profile tree view:
372
+ wait_policy: 0.0000
373
+ wait_policy_total: 3.0425
374
+ update_model: 2.4073
375
+ weight_update: 0.0006
376
+ one_step: 0.0015
377
+ handle_policy_step: 168.3348
378
+ deserialize: 7.1826, stack: 0.8421, obs_to_device_normalize: 40.5132, forward: 79.8262, send_messages: 8.9738
379
+ prepare_outputs: 24.8578
380
+ to_cpu: 16.4872
381
+ [2024-12-29 17:08:32,509][45646] Learner 0 profile tree view:
382
+ misc: 0.0025, prepare_batch: 4.7612
383
+ train: 12.4279
384
+ epoch_init: 0.0029, minibatch_init: 0.0036, losses_postprocess: 0.2127, kl_divergence: 0.2651, after_optimizer: 2.0727
385
+ calculate_losses: 5.4084
386
+ losses_init: 0.0021, forward_head: 0.4040, bptt_initial: 3.0630, tail: 0.3631, advantages_returns: 0.0862, losses: 0.7443
387
+ bptt: 0.6608
388
+ bptt_forward_core: 0.6354
389
+ update: 4.2704
390
+ clip: 0.4146
391
+ [2024-12-29 17:08:32,510][45646] Loop Runner_EvtLoop terminating...
392
+ [2024-12-29 17:08:32,511][45646] Runner profile tree view:
393
+ main_loop: 198.7540
394
+ [2024-12-29 17:08:32,511][45646] Collected {0: 4005888}, FPS: 20155.0
395
+ [2024-12-29 17:17:15,263][45646] Loading existing experiment configuration from /fsx/users/amzfang/rl_course/train_dir/default_experiment/config.json
396
+ [2024-12-29 17:17:15,265][45646] Overriding arg 'num_workers' with value 1 passed from command line
397
+ [2024-12-29 17:17:15,266][45646] Adding new argument 'no_render'=True that is not in the saved config file!
398
+ [2024-12-29 17:17:15,266][45646] Adding new argument 'save_video'=True that is not in the saved config file!
399
+ [2024-12-29 17:17:15,266][45646] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
400
+ [2024-12-29 17:17:15,267][45646] Adding new argument 'video_name'=None that is not in the saved config file!
401
+ [2024-12-29 17:17:15,267][45646] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
402
+ [2024-12-29 17:17:15,267][45646] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
403
+ [2024-12-29 17:17:15,268][45646] Adding new argument 'push_to_hub'=False that is not in the saved config file!
404
+ [2024-12-29 17:17:15,268][45646] Adding new argument 'hf_repository'=None that is not in the saved config file!
405
+ [2024-12-29 17:17:15,268][45646] Adding new argument 'policy_index'=0 that is not in the saved config file!
406
+ [2024-12-29 17:17:15,269][45646] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
407
+ [2024-12-29 17:17:15,269][45646] Adding new argument 'train_script'=None that is not in the saved config file!
408
+ [2024-12-29 17:17:15,270][45646] Adding new argument 'enjoy_script'=None that is not in the saved config file!
409
+ [2024-12-29 17:17:15,270][45646] Using frameskip 1 and render_action_repeat=4 for evaluation
410
+ [2024-12-29 17:17:15,490][45646] Doom resolution: 160x120, resize resolution: (128, 72)
411
+ [2024-12-29 17:17:15,512][45646] RunningMeanStd input shape: (3, 72, 128)
412
+ [2024-12-29 17:17:15,552][45646] RunningMeanStd input shape: (1,)
413
+ [2024-12-29 17:17:15,665][45646] ConvEncoder: input_channels=3
414
+ [2024-12-29 17:17:15,912][45646] Conv encoder output size: 512
415
+ [2024-12-29 17:17:15,913][45646] Policy head output size: 512
416
+ [2024-12-29 17:17:16,970][45646] Loading state from checkpoint /fsx/users/amzfang/rl_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
417
+ [2024-12-29 17:17:18,757][45646] Num frames 100...
418
+ [2024-12-29 17:17:18,850][45646] Num frames 200...
419
+ [2024-12-29 17:17:18,943][45646] Num frames 300...
420
+ [2024-12-29 17:17:19,038][45646] Num frames 400...
421
+ [2024-12-29 17:17:19,142][45646] Avg episode rewards: #0: 10.520, true rewards: #0: 4.520
422
+ [2024-12-29 17:17:19,142][45646] Avg episode reward: 10.520, avg true_objective: 4.520
423
+ [2024-12-29 17:17:19,188][45646] Num frames 500...
424
+ [2024-12-29 17:17:19,281][45646] Num frames 600...
425
+ [2024-12-29 17:17:19,374][45646] Num frames 700...
426
+ [2024-12-29 17:17:19,467][45646] Num frames 800...
427
+ [2024-12-29 17:17:19,560][45646] Num frames 900...
428
+ [2024-12-29 17:17:19,652][45646] Num frames 1000...
429
+ [2024-12-29 17:17:19,744][45646] Num frames 1100...
430
+ [2024-12-29 17:17:19,839][45646] Num frames 1200...
431
+ [2024-12-29 17:17:19,931][45646] Num frames 1300...
432
+ [2024-12-29 17:17:20,001][45646] Avg episode rewards: #0: 14.585, true rewards: #0: 6.585
433
+ [2024-12-29 17:17:20,001][45646] Avg episode reward: 14.585, avg true_objective: 6.585
434
+ [2024-12-29 17:17:20,077][45646] Num frames 1400...
435
+ [2024-12-29 17:17:20,169][45646] Num frames 1500...
436
+ [2024-12-29 17:17:20,263][45646] Num frames 1600...
437
+ [2024-12-29 17:17:20,355][45646] Num frames 1700...
438
+ [2024-12-29 17:17:20,447][45646] Num frames 1800...
439
+ [2024-12-29 17:17:20,540][45646] Num frames 1900...
440
+ [2024-12-29 17:17:20,636][45646] Num frames 2000...
441
+ [2024-12-29 17:17:20,728][45646] Num frames 2100...
442
+ [2024-12-29 17:17:20,820][45646] Num frames 2200...
443
+ [2024-12-29 17:17:20,913][45646] Num frames 2300...
444
+ [2024-12-29 17:17:21,005][45646] Num frames 2400...
445
+ [2024-12-29 17:17:21,098][45646] Num frames 2500...
446
+ [2024-12-29 17:17:21,191][45646] Num frames 2600...
447
+ [2024-12-29 17:17:21,283][45646] Num frames 2700...
448
+ [2024-12-29 17:17:21,378][45646] Num frames 2800...
449
+ [2024-12-29 17:17:21,471][45646] Num frames 2900...
450
+ [2024-12-29 17:17:21,564][45646] Num frames 3000...
451
+ [2024-12-29 17:17:21,657][45646] Num frames 3100...
452
+ [2024-12-29 17:17:21,749][45646] Num frames 3200...
453
+ [2024-12-29 17:17:21,842][45646] Num frames 3300...
454
+ [2024-12-29 17:17:21,935][45646] Num frames 3400...
455
+ [2024-12-29 17:17:22,005][45646] Avg episode rewards: #0: 27.056, true rewards: #0: 11.390
456
+ [2024-12-29 17:17:22,005][45646] Avg episode reward: 27.056, avg true_objective: 11.390
457
+ [2024-12-29 17:17:22,081][45646] Num frames 3500...
458
+ [2024-12-29 17:17:22,175][45646] Num frames 3600...
459
+ [2024-12-29 17:17:22,267][45646] Num frames 3700...
460
+ [2024-12-29 17:17:22,359][45646] Num frames 3800...
461
+ [2024-12-29 17:17:22,451][45646] Num frames 3900...
462
+ [2024-12-29 17:17:22,543][45646] Num frames 4000...
463
+ [2024-12-29 17:17:22,635][45646] Num frames 4100...
464
+ [2024-12-29 17:17:22,727][45646] Num frames 4200...
465
+ [2024-12-29 17:17:22,819][45646] Num frames 4300...
466
+ [2024-12-29 17:17:22,960][45646] Avg episode rewards: #0: 25.490, true rewards: #0: 10.990
467
+ [2024-12-29 17:17:22,961][45646] Avg episode reward: 25.490, avg true_objective: 10.990
468
+ [2024-12-29 17:17:22,965][45646] Num frames 4400...
469
+ [2024-12-29 17:17:23,056][45646] Num frames 4500...
470
+ [2024-12-29 17:17:23,150][45646] Num frames 4600...
471
+ [2024-12-29 17:17:23,243][45646] Num frames 4700...
472
+ [2024-12-29 17:17:23,334][45646] Num frames 4800...
473
+ [2024-12-29 17:17:23,426][45646] Num frames 4900...
474
+ [2024-12-29 17:17:23,518][45646] Num frames 5000...
475
+ [2024-12-29 17:17:23,634][45646] Avg episode rewards: #0: 23.136, true rewards: #0: 10.136
476
+ [2024-12-29 17:17:23,635][45646] Avg episode reward: 23.136, avg true_objective: 10.136
477
+ [2024-12-29 17:17:23,665][45646] Num frames 5100...
478
+ [2024-12-29 17:17:23,757][45646] Num frames 5200...
479
+ [2024-12-29 17:17:23,850][45646] Num frames 5300...
480
+ [2024-12-29 17:17:23,942][45646] Num frames 5400...
481
+ [2024-12-29 17:17:24,034][45646] Num frames 5500...
482
+ [2024-12-29 17:17:24,127][45646] Num frames 5600...
483
+ [2024-12-29 17:17:24,219][45646] Num frames 5700...
484
+ [2024-12-29 17:17:24,312][45646] Num frames 5800...
485
+ [2024-12-29 17:17:24,403][45646] Num frames 5900...
486
+ [2024-12-29 17:17:24,516][45646] Avg episode rewards: #0: 22.440, true rewards: #0: 9.940
487
+ [2024-12-29 17:17:24,516][45646] Avg episode reward: 22.440, avg true_objective: 9.940
488
+ [2024-12-29 17:17:24,550][45646] Num frames 6000...
489
+ [2024-12-29 17:17:24,643][45646] Num frames 6100...
490
+ [2024-12-29 17:17:24,735][45646] Num frames 6200...
491
+ [2024-12-29 17:17:24,827][45646] Num frames 6300...
492
+ [2024-12-29 17:17:24,919][45646] Num frames 6400...
493
+ [2024-12-29 17:17:25,043][45646] Avg episode rewards: #0: 20.394, true rewards: #0: 9.251
494
+ [2024-12-29 17:17:25,043][45646] Avg episode reward: 20.394, avg true_objective: 9.251
495
+ [2024-12-29 17:17:25,066][45646] Num frames 6500...
496
+ [2024-12-29 17:17:25,158][45646] Num frames 6600...
497
+ [2024-12-29 17:17:25,250][45646] Num frames 6700...
498
+ [2024-12-29 17:17:25,343][45646] Num frames 6800...
499
+ [2024-12-29 17:17:25,436][45646] Num frames 6900...
500
+ [2024-12-29 17:17:25,528][45646] Num frames 7000...
501
+ [2024-12-29 17:17:25,620][45646] Num frames 7100...
502
+ [2024-12-29 17:17:25,713][45646] Num frames 7200...
503
+ [2024-12-29 17:17:25,806][45646] Num frames 7300...
504
+ [2024-12-29 17:17:25,898][45646] Num frames 7400...
505
+ [2024-12-29 17:17:25,991][45646] Num frames 7500...
506
+ [2024-12-29 17:17:26,085][45646] Num frames 7600...
507
+ [2024-12-29 17:17:26,177][45646] Num frames 7700...
508
+ [2024-12-29 17:17:26,253][45646] Avg episode rewards: #0: 21.030, true rewards: #0: 9.655
509
+ [2024-12-29 17:17:26,253][45646] Avg episode reward: 21.030, avg true_objective: 9.655
510
+ [2024-12-29 17:17:26,323][45646] Num frames 7800...
511
+ [2024-12-29 17:17:26,415][45646] Num frames 7900...
512
+ [2024-12-29 17:17:26,507][45646] Num frames 8000...
513
+ [2024-12-29 17:17:26,600][45646] Num frames 8100...
514
+ [2024-12-29 17:17:26,691][45646] Num frames 8200...
515
+ [2024-12-29 17:17:26,783][45646] Num frames 8300...
516
+ [2024-12-29 17:17:26,874][45646] Num frames 8400...
517
+ [2024-12-29 17:17:26,967][45646] Num frames 8500...
518
+ [2024-12-29 17:17:27,061][45646] Num frames 8600...
519
+ [2024-12-29 17:17:27,111][45646] Avg episode rewards: #0: 20.889, true rewards: #0: 9.556
520
+ [2024-12-29 17:17:27,112][45646] Avg episode reward: 20.889, avg true_objective: 9.556
521
+ [2024-12-29 17:17:27,205][45646] Num frames 8700...
522
+ [2024-12-29 17:17:27,298][45646] Num frames 8800...
523
+ [2024-12-29 17:17:27,389][45646] Num frames 8900...
524
+ [2024-12-29 17:17:27,481][45646] Num frames 9000...
525
+ [2024-12-29 17:17:27,573][45646] Num frames 9100...
526
+ [2024-12-29 17:17:27,666][45646] Num frames 9200...
527
+ [2024-12-29 17:17:27,758][45646] Num frames 9300...
528
+ [2024-12-29 17:17:27,851][45646] Num frames 9400...
529
+ [2024-12-29 17:17:27,945][45646] Num frames 9500...
530
+ [2024-12-29 17:17:28,038][45646] Num frames 9600...
531
+ [2024-12-29 17:17:28,131][45646] Num frames 9700...
532
+ [2024-12-29 17:17:28,225][45646] Num frames 9800...
533
+ [2024-12-29 17:17:28,317][45646] Num frames 9900...
534
+ [2024-12-29 17:17:28,409][45646] Num frames 10000...
535
+ [2024-12-29 17:17:28,502][45646] Num frames 10100...
536
+ [2024-12-29 17:17:28,593][45646] Num frames 10200...
537
+ [2024-12-29 17:17:28,687][45646] Num frames 10300...
538
+ [2024-12-29 17:17:28,781][45646] Num frames 10400...
539
+ [2024-12-29 17:17:28,874][45646] Num frames 10500...
540
+ [2024-12-29 17:17:28,967][45646] Num frames 10600...
541
+ [2024-12-29 17:17:29,062][45646] Num frames 10700...
542
+ [2024-12-29 17:17:29,113][45646] Avg episode rewards: #0: 24.500, true rewards: #0: 10.700
543
+ [2024-12-29 17:17:29,114][45646] Avg episode reward: 24.500, avg true_objective: 10.700
544
+ [2024-12-29 17:17:46,660][45646] Replay video saved to /fsx/users/amzfang/rl_course/train_dir/default_experiment/replay.mp4!
545
+ [2024-12-29 17:34:26,145][45646] Loading existing experiment configuration from /fsx/users/amzfang/rl_course/train_dir/default_experiment/config.json
546
+ [2024-12-29 17:34:26,147][45646] Overriding arg 'num_workers' with value 1 passed from command line
547
+ [2024-12-29 17:34:26,148][45646] Adding new argument 'no_render'=True that is not in the saved config file!
548
+ [2024-12-29 17:34:26,148][45646] Adding new argument 'save_video'=True that is not in the saved config file!
549
+ [2024-12-29 17:34:26,149][45646] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
550
+ [2024-12-29 17:34:26,149][45646] Adding new argument 'video_name'=None that is not in the saved config file!
551
+ [2024-12-29 17:34:26,149][45646] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
552
+ [2024-12-29 17:34:26,150][45646] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
553
+ [2024-12-29 17:34:26,150][45646] Adding new argument 'push_to_hub'=True that is not in the saved config file!
554
+ [2024-12-29 17:34:26,151][45646] Adding new argument 'hf_repository'='ThomasSimonini/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
555
+ [2024-12-29 17:34:26,151][45646] Adding new argument 'policy_index'=0 that is not in the saved config file!
556
+ [2024-12-29 17:34:26,151][45646] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
557
+ [2024-12-29 17:34:26,152][45646] Adding new argument 'train_script'=None that is not in the saved config file!
558
+ [2024-12-29 17:34:26,152][45646] Adding new argument 'enjoy_script'=None that is not in the saved config file!
559
+ [2024-12-29 17:34:26,152][45646] Using frameskip 1 and render_action_repeat=4 for evaluation
560
+ [2024-12-29 17:34:26,279][45646] RunningMeanStd input shape: (3, 72, 128)
561
+ [2024-12-29 17:34:26,352][45646] RunningMeanStd input shape: (1,)
562
+ [2024-12-29 17:34:26,454][45646] ConvEncoder: input_channels=3
563
+ [2024-12-29 17:34:26,728][45646] Conv encoder output size: 512
564
+ [2024-12-29 17:34:26,729][45646] Policy head output size: 512
565
+ [2024-12-29 17:34:26,871][45646] Loading state from checkpoint /fsx/users/amzfang/rl_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
566
+ [2024-12-29 17:34:27,729][45646] Num frames 100...
567
+ [2024-12-29 17:34:27,822][45646] Num frames 200...
568
+ [2024-12-29 17:34:27,913][45646] Num frames 300...
569
+ [2024-12-29 17:34:28,004][45646] Num frames 400...
570
+ [2024-12-29 17:34:28,096][45646] Num frames 500...
571
+ [2024-12-29 17:34:28,186][45646] Num frames 600...
572
+ [2024-12-29 17:34:28,334][45646] Avg episode rewards: #0: 14.980, true rewards: #0: 6.980
573
+ [2024-12-29 17:34:28,334][45646] Avg episode reward: 14.980, avg true_objective: 6.980
574
+ [2024-12-29 17:34:28,336][45646] Num frames 700...
575
+ [2024-12-29 17:34:28,428][45646] Num frames 800...
576
+ [2024-12-29 17:34:28,522][45646] Num frames 900...
577
+ [2024-12-29 17:34:28,614][45646] Num frames 1000...
578
+ [2024-12-29 17:34:28,708][45646] Num frames 1100...
579
+ [2024-12-29 17:34:28,801][45646] Num frames 1200...
580
+ [2024-12-29 17:34:28,895][45646] Num frames 1300...
581
+ [2024-12-29 17:34:28,987][45646] Num frames 1400...
582
+ [2024-12-29 17:34:29,133][45646] Avg episode rewards: #0: 14.990, true rewards: #0: 7.490
583
+ [2024-12-29 17:34:29,134][45646] Avg episode reward: 14.990, avg true_objective: 7.490
584
+ [2024-12-29 17:34:29,136][45646] Num frames 1500...
585
+ [2024-12-29 17:34:29,229][45646] Num frames 1600...
586
+ [2024-12-29 17:34:29,323][45646] Num frames 1700...
587
+ [2024-12-29 17:34:29,417][45646] Num frames 1800...
588
+ [2024-12-29 17:34:29,510][45646] Num frames 1900...
589
+ [2024-12-29 17:34:29,604][45646] Num frames 2000...
590
+ [2024-12-29 17:34:29,696][45646] Num frames 2100...
591
+ [2024-12-29 17:34:29,790][45646] Num frames 2200...
592
+ [2024-12-29 17:34:29,883][45646] Num frames 2300...
593
+ [2024-12-29 17:34:29,979][45646] Num frames 2400...
594
+ [2024-12-29 17:34:30,072][45646] Num frames 2500...
595
+ [2024-12-29 17:34:30,166][45646] Num frames 2600...
596
+ [2024-12-29 17:34:30,242][45646] Avg episode rewards: #0: 19.080, true rewards: #0: 8.747
597
+ [2024-12-29 17:34:30,242][45646] Avg episode reward: 19.080, avg true_objective: 8.747
598
+ [2024-12-29 17:34:30,314][45646] Num frames 2700...
599
+ [2024-12-29 17:34:30,407][45646] Num frames 2800...
600
+ [2024-12-29 17:34:30,500][45646] Num frames 2900...
601
+ [2024-12-29 17:34:30,595][45646] Num frames 3000...
602
+ [2024-12-29 17:34:30,687][45646] Num frames 3100...
603
+ [2024-12-29 17:34:30,780][45646] Num frames 3200...
604
+ [2024-12-29 17:34:30,875][45646] Num frames 3300...
605
+ [2024-12-29 17:34:30,970][45646] Num frames 3400...
606
+ [2024-12-29 17:34:31,063][45646] Num frames 3500...
607
+ [2024-12-29 17:34:31,157][45646] Num frames 3600...
608
+ [2024-12-29 17:34:31,251][45646] Num frames 3700...
609
+ [2024-12-29 17:34:31,343][45646] Num frames 3800...
610
+ [2024-12-29 17:34:31,439][45646] Num frames 3900...
611
+ [2024-12-29 17:34:31,566][45646] Avg episode rewards: #0: 22.443, true rewards: #0: 9.942
612
+ [2024-12-29 17:34:31,567][45646] Avg episode reward: 22.443, avg true_objective: 9.942
613
+ [2024-12-29 17:34:31,588][45646] Num frames 4000...
614
+ [2024-12-29 17:34:31,682][45646] Num frames 4100...
615
+ [2024-12-29 17:34:31,775][45646] Num frames 4200...
616
+ [2024-12-29 17:34:31,868][45646] Num frames 4300...
617
+ [2024-12-29 17:34:31,961][45646] Num frames 4400...
618
+ [2024-12-29 17:34:32,055][45646] Num frames 4500...
619
+ [2024-12-29 17:34:32,147][45646] Num frames 4600...
620
+ [2024-12-29 17:34:32,241][45646] Num frames 4700...
621
+ [2024-12-29 17:34:32,336][45646] Num frames 4800...
622
+ [2024-12-29 17:34:32,429][45646] Num frames 4900...
623
+ [2024-12-29 17:34:32,522][45646] Num frames 5000...
624
+ [2024-12-29 17:34:32,618][45646] Num frames 5100...
625
+ [2024-12-29 17:34:32,711][45646] Num frames 5200...
626
+ [2024-12-29 17:34:32,804][45646] Num frames 5300...
627
+ [2024-12-29 17:34:32,908][45646] Avg episode rewards: #0: 24.506, true rewards: #0: 10.706
628
+ [2024-12-29 17:34:32,908][45646] Avg episode reward: 24.506, avg true_objective: 10.706
629
+ [2024-12-29 17:34:32,952][45646] Num frames 5400...
630
+ [2024-12-29 17:34:33,046][45646] Num frames 5500...
631
+ [2024-12-29 17:34:33,141][45646] Num frames 5600...
632
+ [2024-12-29 17:34:33,233][45646] Num frames 5700...
633
+ [2024-12-29 17:34:33,327][45646] Num frames 5800...
634
+ [2024-12-29 17:34:33,421][45646] Num frames 5900...
635
+ [2024-12-29 17:34:33,515][45646] Num frames 6000...
636
+ [2024-12-29 17:34:33,609][45646] Num frames 6100...
637
+ [2024-12-29 17:34:33,702][45646] Num frames 6200...
638
+ [2024-12-29 17:34:33,796][45646] Num frames 6300...
639
+ [2024-12-29 17:34:33,888][45646] Num frames 6400...
640
+ [2024-12-29 17:34:33,984][45646] Num frames 6500...
641
+ [2024-12-29 17:34:34,078][45646] Num frames 6600...
642
+ [2024-12-29 17:34:34,172][45646] Num frames 6700...
643
+ [2024-12-29 17:34:34,265][45646] Num frames 6800...
644
+ [2024-12-29 17:34:34,359][45646] Num frames 6900...
645
+ [2024-12-29 17:34:34,452][45646] Num frames 7000...
646
+ [2024-12-29 17:34:34,585][45646] Avg episode rewards: #0: 27.475, true rewards: #0: 11.808
647
+ [2024-12-29 17:34:34,586][45646] Avg episode reward: 27.475, avg true_objective: 11.808
648
+ [2024-12-29 17:34:34,600][45646] Num frames 7100...
649
+ [2024-12-29 17:34:34,692][45646] Num frames 7200...
650
+ [2024-12-29 17:34:34,785][45646] Num frames 7300...
651
+ [2024-12-29 17:34:34,878][45646] Num frames 7400...
652
+ [2024-12-29 17:34:34,970][45646] Num frames 7500...
653
+ [2024-12-29 17:34:35,113][45646] Avg episode rewards: #0: 24.996, true rewards: #0: 10.853
654
+ [2024-12-29 17:34:35,113][45646] Avg episode reward: 24.996, avg true_objective: 10.853
655
+ [2024-12-29 17:34:35,116][45646] Num frames 7600...
656
+ [2024-12-29 17:34:35,209][45646] Num frames 7700...
657
+ [2024-12-29 17:34:35,302][45646] Num frames 7800...
658
+ [2024-12-29 17:34:35,396][45646] Num frames 7900...
659
+ [2024-12-29 17:34:35,489][45646] Num frames 8000...
660
+ [2024-12-29 17:34:35,582][45646] Num frames 8100...
661
+ [2024-12-29 17:34:35,674][45646] Num frames 8200...
662
+ [2024-12-29 17:34:35,766][45646] Num frames 8300...
663
+ [2024-12-29 17:34:35,862][45646] Num frames 8400...
664
+ [2024-12-29 17:34:35,955][45646] Num frames 8500...
665
+ [2024-12-29 17:34:36,049][45646] Num frames 8600...
666
+ [2024-12-29 17:34:36,122][45646] Avg episode rewards: #0: 24.776, true rewards: #0: 10.776
667
+ [2024-12-29 17:34:36,122][45646] Avg episode reward: 24.776, avg true_objective: 10.776
668
+ [2024-12-29 17:34:36,196][45646] Num frames 8700...
669
+ [2024-12-29 17:34:36,289][45646] Num frames 8800...
670
+ [2024-12-29 17:34:36,381][45646] Num frames 8900...
671
+ [2024-12-29 17:34:36,475][45646] Num frames 9000...
672
+ [2024-12-29 17:34:36,569][45646] Num frames 9100...
673
+ [2024-12-29 17:34:36,662][45646] Num frames 9200...
674
+ [2024-12-29 17:34:36,755][45646] Num frames 9300...
675
+ [2024-12-29 17:34:36,846][45646] Num frames 9400...
676
+ [2024-12-29 17:34:36,938][45646] Num frames 9500...
677
+ [2024-12-29 17:34:37,030][45646] Num frames 9600...
678
+ [2024-12-29 17:34:37,122][45646] Num frames 9700...
679
+ [2024-12-29 17:34:37,182][45646] Avg episode rewards: #0: 24.786, true rewards: #0: 10.786
680
+ [2024-12-29 17:34:37,183][45646] Avg episode reward: 24.786, avg true_objective: 10.786
681
+ [2024-12-29 17:34:37,269][45646] Num frames 9800...
682
+ [2024-12-29 17:34:37,362][45646] Num frames 9900...
683
+ [2024-12-29 17:34:37,454][45646] Num frames 10000...
684
+ [2024-12-29 17:34:37,546][45646] Num frames 10100...
685
+ [2024-12-29 17:34:37,638][45646] Num frames 10200...
686
+ [2024-12-29 17:34:37,731][45646] Num frames 10300...
687
+ [2024-12-29 17:34:37,824][45646] Num frames 10400...
688
+ [2024-12-29 17:34:37,916][45646] Num frames 10500...
689
+ [2024-12-29 17:34:38,008][45646] Num frames 10600...
690
+ [2024-12-29 17:34:38,094][45646] Avg episode rewards: #0: 24.235, true rewards: #0: 10.635
691
+ [2024-12-29 17:34:38,095][45646] Avg episode reward: 24.235, avg true_objective: 10.635
692
+ [2024-12-29 17:34:55,349][45646] Replay video saved to /fsx/users/amzfang/rl_course/train_dir/default_experiment/replay.mp4!
693
+ [2024-12-29 17:37:23,187][45646] Loading existing experiment configuration from /fsx/users/amzfang/rl_course/train_dir/default_experiment/config.json
694
+ [2024-12-29 17:38:19,600][45646] Loading existing experiment configuration from /fsx/users/amzfang/rl_course/train_dir/default_experiment/config.json
695
+ [2024-12-29 17:38:19,601][45646] Overriding arg 'num_workers' with value 1 passed from command line
696
+ [2024-12-29 17:38:19,602][45646] Adding new argument 'no_render'=True that is not in the saved config file!
697
+ [2024-12-29 17:38:19,602][45646] Adding new argument 'save_video'=True that is not in the saved config file!
698
+ [2024-12-29 17:38:19,602][45646] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
699
+ [2024-12-29 17:38:19,603][45646] Adding new argument 'video_name'=None that is not in the saved config file!
700
+ [2024-12-29 17:38:19,603][45646] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
701
+ [2024-12-29 17:38:19,604][45646] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
702
+ [2024-12-29 17:38:19,604][45646] Adding new argument 'push_to_hub'=True that is not in the saved config file!
703
+ [2024-12-29 17:38:19,605][45646] Adding new argument 'hf_repository'='Fangliuwh/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
704
+ [2024-12-29 17:38:19,605][45646] Adding new argument 'policy_index'=0 that is not in the saved config file!
705
+ [2024-12-29 17:38:19,605][45646] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
706
+ [2024-12-29 17:38:19,606][45646] Adding new argument 'train_script'=None that is not in the saved config file!
707
+ [2024-12-29 17:38:19,606][45646] Adding new argument 'enjoy_script'=None that is not in the saved config file!
708
+ [2024-12-29 17:38:19,607][45646] Using frameskip 1 and render_action_repeat=4 for evaluation
709
+ [2024-12-29 17:38:19,637][45646] RunningMeanStd input shape: (3, 72, 128)
710
+ [2024-12-29 17:38:19,638][45646] RunningMeanStd input shape: (1,)
711
+ [2024-12-29 17:38:19,647][45646] ConvEncoder: input_channels=3
712
+ [2024-12-29 17:38:19,678][45646] Conv encoder output size: 512
713
+ [2024-12-29 17:38:19,682][45646] Policy head output size: 512
714
+ [2024-12-29 17:38:19,703][45646] Loading state from checkpoint /fsx/users/amzfang/rl_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
715
+ [2024-12-29 17:38:20,110][45646] Num frames 100...
716
+ [2024-12-29 17:38:20,204][45646] Num frames 200...
717
+ [2024-12-29 17:38:20,296][45646] Num frames 300...
718
+ [2024-12-29 17:38:20,387][45646] Num frames 400...
719
+ [2024-12-29 17:38:20,481][45646] Avg episode rewards: #0: 8.420, true rewards: #0: 4.420
720
+ [2024-12-29 17:38:20,481][45646] Avg episode reward: 8.420, avg true_objective: 4.420
721
+ [2024-12-29 17:38:20,534][45646] Num frames 500...
722
+ [2024-12-29 17:38:20,627][45646] Num frames 600...
723
+ [2024-12-29 17:38:20,720][45646] Num frames 700...
724
+ [2024-12-29 17:38:20,813][45646] Num frames 800...
725
+ [2024-12-29 17:38:20,905][45646] Num frames 900...
726
+ [2024-12-29 17:38:20,997][45646] Num frames 1000...
727
+ [2024-12-29 17:38:21,089][45646] Num frames 1100...
728
+ [2024-12-29 17:38:21,225][45646] Avg episode rewards: #0: 12.955, true rewards: #0: 5.955
729
+ [2024-12-29 17:38:21,226][45646] Avg episode reward: 12.955, avg true_objective: 5.955
730
+ [2024-12-29 17:38:21,234][45646] Num frames 1200...
731
+ [2024-12-29 17:38:21,327][45646] Num frames 1300...
732
+ [2024-12-29 17:38:21,419][45646] Num frames 1400...
733
+ [2024-12-29 17:38:21,511][45646] Num frames 1500...
734
+ [2024-12-29 17:38:21,603][45646] Num frames 1600...
735
+ [2024-12-29 17:38:21,695][45646] Num frames 1700...
736
+ [2024-12-29 17:38:21,787][45646] Num frames 1800...
737
+ [2024-12-29 17:38:21,879][45646] Num frames 1900...
738
+ [2024-12-29 17:38:21,973][45646] Num frames 2000...
739
+ [2024-12-29 17:38:22,065][45646] Num frames 2100...
740
+ [2024-12-29 17:38:22,157][45646] Num frames 2200...
741
+ [2024-12-29 17:38:22,250][45646] Num frames 2300...
742
+ [2024-12-29 17:38:22,343][45646] Num frames 2400...
743
+ [2024-12-29 17:38:22,437][45646] Num frames 2500...
744
+ [2024-12-29 17:38:22,530][45646] Num frames 2600...
745
+ [2024-12-29 17:38:22,622][45646] Num frames 2700...
746
+ [2024-12-29 17:38:22,715][45646] Num frames 2800...
747
+ [2024-12-29 17:38:22,808][45646] Num frames 2900...
748
+ [2024-12-29 17:38:22,900][45646] Num frames 3000...
749
+ [2024-12-29 17:38:22,993][45646] Num frames 3100...
750
+ [2024-12-29 17:38:23,056][45646] Avg episode rewards: #0: 22.370, true rewards: #0: 10.370
751
+ [2024-12-29 17:38:23,057][45646] Avg episode reward: 22.370, avg true_objective: 10.370
752
+ [2024-12-29 17:38:23,140][45646] Num frames 3200...
753
+ [2024-12-29 17:38:23,231][45646] Num frames 3300...
754
+ [2024-12-29 17:38:23,323][45646] Num frames 3400...
755
+ [2024-12-29 17:38:23,417][45646] Num frames 3500...
756
+ [2024-12-29 17:38:23,509][45646] Num frames 3600...
757
+ [2024-12-29 17:38:23,600][45646] Num frames 3700...
758
+ [2024-12-29 17:38:23,695][45646] Num frames 3800...
759
+ [2024-12-29 17:38:23,787][45646] Num frames 3900...
760
+ [2024-12-29 17:38:23,880][45646] Num frames 4000...
761
+ [2024-12-29 17:38:23,973][45646] Num frames 4100...
762
+ [2024-12-29 17:38:24,064][45646] Num frames 4200...
763
+ [2024-12-29 17:38:24,157][45646] Num frames 4300...
764
+ [2024-12-29 17:38:24,236][45646] Avg episode rewards: #0: 22.817, true rewards: #0: 10.817
765
+ [2024-12-29 17:38:24,236][45646] Avg episode reward: 22.817, avg true_objective: 10.817
766
+ [2024-12-29 17:38:24,304][45646] Num frames 4400...
767
+ [2024-12-29 17:38:24,398][45646] Num frames 4500...
768
+ [2024-12-29 17:38:24,490][45646] Num frames 4600...
769
+ [2024-12-29 17:38:24,582][45646] Num frames 4700...
770
+ [2024-12-29 17:38:24,674][45646] Num frames 4800...
771
+ [2024-12-29 17:38:24,767][45646] Num frames 4900...
772
+ [2024-12-29 17:38:24,861][45646] Num frames 5000...
773
+ [2024-12-29 17:38:24,954][45646] Num frames 5100...
774
+ [2024-12-29 17:38:25,047][45646] Num frames 5200...
775
+ [2024-12-29 17:38:25,130][45646] Avg episode rewards: #0: 22.862, true rewards: #0: 10.462
776
+ [2024-12-29 17:38:25,130][45646] Avg episode reward: 22.862, avg true_objective: 10.462
777
+ [2024-12-29 17:38:25,193][45646] Num frames 5300...
778
+ [2024-12-29 17:38:25,286][45646] Num frames 5400...
779
+ [2024-12-29 17:38:25,378][45646] Num frames 5500...
780
+ [2024-12-29 17:38:25,471][45646] Num frames 5600...
781
+ [2024-12-29 17:38:25,562][45646] Num frames 5700...
782
+ [2024-12-29 17:38:25,654][45646] Num frames 5800...
783
+ [2024-12-29 17:38:25,746][45646] Num frames 5900...
784
+ [2024-12-29 17:38:25,839][45646] Num frames 6000...
785
+ [2024-12-29 17:38:25,931][45646] Num frames 6100...
786
+ [2024-12-29 17:38:26,071][45646] Avg episode rewards: #0: 22.485, true rewards: #0: 10.318
787
+ [2024-12-29 17:38:26,072][45646] Avg episode reward: 22.485, avg true_objective: 10.318
788
+ [2024-12-29 17:38:26,080][45646] Num frames 6200...
789
+ [2024-12-29 17:38:26,172][45646] Num frames 6300...
790
+ [2024-12-29 17:38:26,264][45646] Num frames 6400...
791
+ [2024-12-29 17:38:26,356][45646] Num frames 6500...
792
+ [2024-12-29 17:38:26,448][45646] Num frames 6600...
793
+ [2024-12-29 17:38:26,540][45646] Num frames 6700...
794
+ [2024-12-29 17:38:26,632][45646] Num frames 6800...
795
+ [2024-12-29 17:38:26,725][45646] Num frames 6900...
796
+ [2024-12-29 17:38:26,818][45646] Num frames 7000...
797
+ [2024-12-29 17:38:26,913][45646] Num frames 7100...
798
+ [2024-12-29 17:38:27,005][45646] Num frames 7200...
799
+ [2024-12-29 17:38:27,098][45646] Num frames 7300...
800
+ [2024-12-29 17:38:27,191][45646] Num frames 7400...
801
+ [2024-12-29 17:38:27,286][45646] Num frames 7500...
802
+ [2024-12-29 17:38:27,378][45646] Num frames 7600...
803
+ [2024-12-29 17:38:27,473][45646] Num frames 7700...
804
+ [2024-12-29 17:38:27,566][45646] Num frames 7800...
805
+ [2024-12-29 17:38:27,661][45646] Num frames 7900...
806
+ [2024-12-29 17:38:27,755][45646] Num frames 8000...
807
+ [2024-12-29 17:38:27,849][45646] Num frames 8100...
808
+ [2024-12-29 17:38:27,943][45646] Num frames 8200...
809
+ [2024-12-29 17:38:28,083][45646] Avg episode rewards: #0: 27.844, true rewards: #0: 11.844
810
+ [2024-12-29 17:38:28,083][45646] Avg episode reward: 27.844, avg true_objective: 11.844
811
+ [2024-12-29 17:38:28,092][45646] Num frames 8300...
812
+ [2024-12-29 17:38:28,184][45646] Num frames 8400...
813
+ [2024-12-29 17:38:28,276][45646] Num frames 8500...
814
+ [2024-12-29 17:38:28,368][45646] Num frames 8600...
815
+ [2024-12-29 17:38:28,461][45646] Num frames 8700...
816
+ [2024-12-29 17:38:28,579][45646] Avg episode rewards: #0: 25.587, true rewards: #0: 10.962
817
+ [2024-12-29 17:38:28,580][45646] Avg episode reward: 25.587, avg true_objective: 10.962
818
+ [2024-12-29 17:38:28,607][45646] Num frames 8800...
819
+ [2024-12-29 17:38:28,698][45646] Num frames 8900...
820
+ [2024-12-29 17:38:28,791][45646] Num frames 9000...
821
+ [2024-12-29 17:38:28,885][45646] Num frames 9100...
822
+ [2024-12-29 17:38:28,977][45646] Num frames 9200...
823
+ [2024-12-29 17:38:29,070][45646] Num frames 9300...
824
+ [2024-12-29 17:38:29,162][45646] Num frames 9400...
825
+ [2024-12-29 17:38:29,255][45646] Num frames 9500...
826
+ [2024-12-29 17:38:29,360][45646] Avg episode rewards: #0: 24.284, true rewards: #0: 10.618
827
+ [2024-12-29 17:38:29,361][45646] Avg episode reward: 24.284, avg true_objective: 10.618
828
+ [2024-12-29 17:38:29,402][45646] Num frames 9600...
829
+ [2024-12-29 17:38:29,495][45646] Num frames 9700...
830
+ [2024-12-29 17:38:29,587][45646] Num frames 9800...
831
+ [2024-12-29 17:38:29,679][45646] Num frames 9900...
832
+ [2024-12-29 17:38:29,772][45646] Num frames 10000...
833
+ [2024-12-29 17:38:29,865][45646] Num frames 10100...
834
+ [2024-12-29 17:38:29,959][45646] Num frames 10200...
835
+ [2024-12-29 17:38:30,052][45646] Num frames 10300...
836
+ [2024-12-29 17:38:30,144][45646] Num frames 10400...
837
+ [2024-12-29 17:38:30,245][45646] Avg episode rewards: #0: 24.152, true rewards: #0: 10.452
838
+ [2024-12-29 17:38:30,246][45646] Avg episode reward: 24.152, avg true_objective: 10.452
839
+ [2024-12-29 17:38:47,035][45646] Replay video saved to /fsx/users/amzfang/rl_course/train_dir/default_experiment/replay.mp4!