|
|
|
|
|
|
|
|
#include "mlx/mlx.h" |
|
|
#include "time_utils.h" |
|
|
|
|
|
namespace mx = mlx::core; |
|
|
|
|
|
void time_creation_ops() { |
|
|
int M = 2000; |
|
|
int N = 500; |
|
|
auto shape = {M, N}; |
|
|
auto full_fp32 = [&]() { return mx::full(shape, 3.3f); }; |
|
|
TIME(full_fp32); |
|
|
auto zeros_fp32 = [&]() { return mx::zeros(shape, mx::float32); }; |
|
|
TIME(zeros_fp32); |
|
|
auto ones_fp32 = [&]() { return mx::ones(shape, mx::float32); }; |
|
|
TIME(ones_fp32); |
|
|
|
|
|
auto arange_fp32 = [&]() { return mx::arange(0.0, 10.0, 1e-4); }; |
|
|
TIME(arange_fp32); |
|
|
} |
|
|
|
|
|
void time_type_conversions() { |
|
|
int M = 2000; |
|
|
int N = 500; |
|
|
auto shape = {M, N}; |
|
|
auto device = mx::default_device(); |
|
|
|
|
|
auto a = mx::zeros(shape, mx::float32); |
|
|
mx::eval(a); |
|
|
TIMEM("mx::float32 to mx::int32", mx::astype, a, mx::int32, device); |
|
|
TIMEM("mx::float32 to mx::uint32", mx::astype, a, mx::uint32, device); |
|
|
|
|
|
a = mx::zeros(shape, mx::int32); |
|
|
mx::eval(a); |
|
|
TIMEM("mx::int32 to mx::float32", mx::astype, a, mx::float32, device); |
|
|
|
|
|
a = mx::zeros(shape, mx::bool_); |
|
|
mx::eval(a); |
|
|
TIMEM("bool to mx::float32", mx::astype, a, mx::float32, device); |
|
|
TIMEM("bool to mx::int32", mx::astype, a, mx::int32, device); |
|
|
TIMEM("bool to mx::uint32", mx::astype, a, mx::uint32, device); |
|
|
} |
|
|
|
|
|
void time_random_generation() { |
|
|
int M = 2000; |
|
|
int N = 500; |
|
|
|
|
|
auto uniform = [&]() { return mx::random::uniform({M, N}, mx::float32); }; |
|
|
TIME(uniform); |
|
|
auto normal = [&]() { return mx::random::normal({M, N}, mx::float32); }; |
|
|
TIME(normal); |
|
|
} |
|
|
|
|
|
void time_unary_ops() { |
|
|
int M = 2000; |
|
|
int N = 500; |
|
|
auto device = mx::default_device(); |
|
|
|
|
|
auto a = mx::random::normal({M, N}); |
|
|
mx::eval(a); |
|
|
TIME(mlx::core::abs, a, device); |
|
|
TIME(mx::negative, a, device); |
|
|
TIME(mx::sign, a, device); |
|
|
TIME(mx::square, a, device); |
|
|
TIME(mlx::core::sqrt, a, device); |
|
|
TIME(mx::rsqrt, a, device); |
|
|
TIME(mlx::core::exp, a, device); |
|
|
|
|
|
a = mx::random::uniform({M, N}); |
|
|
TIME(mlx::core::log, a, device); |
|
|
} |
|
|
|
|
|
void time_binary_ops() { |
|
|
int M = 1000, N = 100, K = 10; |
|
|
auto condition = mx::random::randint(0, 2, {M, N, K}); |
|
|
auto a = mx::random::uniform({M, N, K}); |
|
|
auto b = mx::random::uniform({M, N, K}); |
|
|
auto device = mx::default_device(); |
|
|
mx::eval(a, b); |
|
|
|
|
|
TIME(mx::add, a, b, device); |
|
|
TIME(mx::subtract, a, b, device); |
|
|
TIME(mx::multiply, a, b, device); |
|
|
TIME(mx::divide, a, b, device); |
|
|
TIME(mx::maximum, a, b, device); |
|
|
TIME(mx::minimum, a, b, device); |
|
|
TIME(mx::where, condition, a, b, device); |
|
|
|
|
|
condition = mx::array({true}); |
|
|
b = mx::random::uniform({1}); |
|
|
mx::eval(b); |
|
|
TIMEM("scalar", mx::add, a, b, device); |
|
|
TIMEM("vector-scalar", mx::subtract, a, b, device); |
|
|
TIMEM("scalar-vector", mx::subtract, b, a, device); |
|
|
TIMEM("scalar", mx::multiply, a, b, device); |
|
|
TIMEM("vector-scalar", mx::divide, a, b, device); |
|
|
TIMEM("scalar-vector", mx::divide, b, a, device); |
|
|
TIMEM("scalar-vector", mx::where, condition, a, b, device); |
|
|
|
|
|
condition = mx::broadcast_to(mx::array({true}), {1000, 100}); |
|
|
a = mx::broadcast_to(mx::random::uniform({1}), {1000, 100}); |
|
|
b = mx::broadcast_to(mx::random::uniform({1}), {1000, 100}); |
|
|
mx::eval(a, b); |
|
|
TIMEM("scalar-scalar broadcast", mx::add, a, b, device); |
|
|
TIMEM("scalar-scalar broadcast", mx::subtract, a, b, device); |
|
|
TIMEM("scalar-scalar broadcast", mx::multiply, a, b, device); |
|
|
TIMEM("scalar-scalar broadcast", mx::divide, a, b, device); |
|
|
TIMEM("scalar-scalar broadcast", mx::where, condition, a, b, device); |
|
|
} |
|
|
|
|
|
void time_strided_ops() { |
|
|
int M = 50, N = 50, O = 50, P = 50; |
|
|
auto a = mx::random::uniform({M, N, O, P}); |
|
|
auto b = mx::random::uniform({M, N, O, P}); |
|
|
auto device = mx::default_device(); |
|
|
mx::eval(a, b); |
|
|
TIMEM("non-strided", mx::add, a, b, device); |
|
|
a = mx::transpose(a, {1, 0, 2, 3}); |
|
|
b = mx::transpose(b, {3, 2, 0, 1}); |
|
|
mx::eval(a, b); |
|
|
TIMEM("strided", mx::add, a, b, device); |
|
|
} |
|
|
|
|
|
void time_comparisons() { |
|
|
int M = 1000, N = 100, K = 10; |
|
|
auto a = mx::random::uniform({M, N, K}); |
|
|
auto b = mx::random::uniform({M, N, K}); |
|
|
auto device = mx::default_device(); |
|
|
mx::eval(a, b); |
|
|
TIME(mx::equal, a, b, device); |
|
|
TIME(mx::greater, a, b, device); |
|
|
TIME(mx::greater_equal, a, b, device); |
|
|
TIME(mx::less, a, b, device); |
|
|
TIME(mx::less_equal, a, b, device); |
|
|
} |
|
|
|
|
|
void time_matvec() { |
|
|
int M = 2000, N = 200; |
|
|
auto a = mx::random::uniform({M, N}); |
|
|
auto b = mx::random::uniform({N}); |
|
|
auto c = mx::random::uniform({M}); |
|
|
mx::eval(a, b, c); |
|
|
auto matvec = [&]() { return mx::matmul(a, b); }; |
|
|
TIME(matvec); |
|
|
|
|
|
auto matvec_transpose = [&]() { return mx::matmul(mx::transpose(a), c); }; |
|
|
TIME(matvec_transpose); |
|
|
} |
|
|
|
|
|
void time_matmul() { |
|
|
int M = 1000, N = 1000, K = 1000; |
|
|
auto a = mx::random::uniform({M, K}); |
|
|
auto b = mx::random::uniform({K, N}); |
|
|
auto device = mx::default_device(); |
|
|
mx::eval(a, b); |
|
|
TIME(mx::matmul, a, b, device); |
|
|
|
|
|
auto transpose_matmul = [&]() { return mx::matmul(mx::transpose(a), b); }; |
|
|
TIME(transpose_matmul); |
|
|
} |
|
|
|
|
|
void time_reductions() { |
|
|
auto a = mx::random::normal({10000, 1000}); |
|
|
mx::eval(a); |
|
|
auto sum_all = [&a]() { return mx::sum(a, false); }; |
|
|
TIME(sum_all); |
|
|
|
|
|
auto sum_along_0 = [&a]() { return mx::sum(a, 0, false); }; |
|
|
TIME(sum_along_0); |
|
|
|
|
|
auto sum_along_1 = [&a]() { return mx::sum(a, 1, false); }; |
|
|
TIME(sum_along_1); |
|
|
|
|
|
auto prod_all = [&a]() { return mx::prod(a, false); }; |
|
|
TIME(prod_all); |
|
|
|
|
|
auto all_true = [&a]() { return mx::all(a, false); }; |
|
|
TIME(all_true); |
|
|
|
|
|
auto all_along_0 = [&a]() { return mx::all(a, 0, false); }; |
|
|
TIME(all_along_0); |
|
|
|
|
|
auto all_along_1 = [&a]() { return mx::all(a, 1, false); }; |
|
|
TIME(all_along_1); |
|
|
|
|
|
auto any_true = [&a]() { return mx::any(a, false); }; |
|
|
TIME(any_true); |
|
|
|
|
|
auto argmin_along_0 = [&a]() { return mx::argmin(a, 0, false); }; |
|
|
TIME(argmin_along_0); |
|
|
|
|
|
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); }; |
|
|
TIME(argmin_along_1); |
|
|
|
|
|
auto indices = mx::array({1}); |
|
|
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1}); |
|
|
std::vector<int> axes{0}; |
|
|
auto b = scatter(a, {indices}, updates, axes); |
|
|
mx::eval(b); |
|
|
|
|
|
auto max_along_0 = [&b]() { return mx::max(b, 0, false); }; |
|
|
TIME(max_along_0); |
|
|
auto max_along_1 = [&b]() { return mx::max(b, 1, false); }; |
|
|
TIME(max_along_1); |
|
|
|
|
|
auto min_along_0 = [&b]() { return mx::min(b, 0, false); }; |
|
|
TIME(min_along_0); |
|
|
auto min_along_1 = [&b]() { return mx::min(b, 1, false); }; |
|
|
TIME(min_along_1); |
|
|
} |
|
|
|
|
|
void time_gather_scatter() { |
|
|
auto a = mx::random::normal({1000, 768}); |
|
|
mx::eval(a); |
|
|
auto indices = mx::random::randint(0, 1000, {256}); |
|
|
mx::eval(indices); |
|
|
|
|
|
auto embedding_lookup = [&a, &indices]() { return mx::take(a, indices, 0); }; |
|
|
TIME(embedding_lookup); |
|
|
|
|
|
indices = mx::random::randint(0, 768 * 1000, {256 * 768}); |
|
|
mx::eval(indices); |
|
|
|
|
|
auto single_element_lookup = [&a, &indices]() { |
|
|
return mx::take(a, indices); |
|
|
}; |
|
|
TIME(single_element_lookup); |
|
|
|
|
|
indices = mx::random::randint(0, 1000, {256}); |
|
|
auto updates = mx::random::normal({256, 1, 768}); |
|
|
mx::eval(indices, updates); |
|
|
|
|
|
auto embedding_update = [&a, &indices, &updates]() { |
|
|
return scatter(a, indices, updates, 0); |
|
|
}; |
|
|
TIME(embedding_update); |
|
|
|
|
|
auto embedding_add = [&a, &indices, &updates]() { |
|
|
return scatter_add(a, indices, updates, 0); |
|
|
}; |
|
|
TIME(embedding_add); |
|
|
|
|
|
a = mx::reshape(a, {-1}); |
|
|
indices = mx::random::randint(0, 768 * 1000, {768 * 256}); |
|
|
updates = mx::random::normal({256 * 768, 1}); |
|
|
mx::eval(a, indices, updates); |
|
|
|
|
|
auto single_element_update = [&a, &indices, &updates]() { |
|
|
return scatter(a, indices, updates, 0); |
|
|
}; |
|
|
TIME(single_element_update); |
|
|
|
|
|
auto single_element_add = [&a, &indices, &updates]() { |
|
|
return scatter_add(a, indices, updates, 0); |
|
|
}; |
|
|
TIME(single_element_add); |
|
|
} |
|
|
|
|
|
void time_divmod() { |
|
|
auto a = mx::random::normal({1000}); |
|
|
auto b = mx::random::normal({1000}); |
|
|
mx::eval({a, b}); |
|
|
|
|
|
auto divmod_fused = [&a, &b]() { return mx::divmod(a, b); }; |
|
|
TIME(divmod_fused); |
|
|
|
|
|
auto divmod_separate = [&a, &b]() { |
|
|
return std::vector<mx::array>{mx::floor_divide(a, b), mx::remainder(a, b)}; |
|
|
}; |
|
|
TIME(divmod_separate); |
|
|
} |
|
|
|
|
|
int main() { |
|
|
std::cout << "Benchmarks for " << mx::default_device() << std::endl; |
|
|
time_creation_ops(); |
|
|
time_type_conversions(); |
|
|
time_unary_ops(); |
|
|
time_binary_ops(); |
|
|
time_strided_ops(); |
|
|
time_random_generation(); |
|
|
time_comparisons(); |
|
|
time_matvec(); |
|
|
time_matmul(); |
|
|
time_reductions(); |
|
|
time_gather_scatter(); |
|
|
time_divmod(); |
|
|
} |
|
|
|