Fah-d commited on
Commit
cbf4a57
·
verified ·
1 Parent(s): 19442b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -14
README.md CHANGED
@@ -28,32 +28,39 @@ It achieves the following results on the evaluation set:
28
 
29
  This model is a fine-tuned version of the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) pre-trained model, specifically trained on the [shmuhammad/AfriSenti-twitter-sentiment](https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment) dataset focusing on Yoruba tweets. It aims to perform sentiment classification on Yoruba tweets.
30
  ## Key details:
31
- - Type: Fine-tuned language model
32
- - Base model: xlm-roberta-base
33
- - Task: Yoruba tweet sentiment classification
34
- - Dataset: shmuhammad/AfriSenti-twitter-sentiment (Yoruba subset)
35
 
36
 
37
  ## Intended uses:
38
- - Classifying sentiment (positive, negative, neutral) on Yoruba tweets.
39
- - Can be used as a starting point for further fine-tuning on specific Yoruba tweet classification tasks.
40
 
41
  ## Limitations:
42
- - Trained on a limited dataset, potentially impacting performance on unseen data.
43
- - Fine-tuned only for sentiment classification, not suitable for other tasks.
44
- - Accuracy might not be optimal for all applications.
45
 
46
 
47
  ## Training and evaluation data
48
 
49
- More information needed
 
 
 
 
 
 
 
50
 
51
  ## Training procedure
52
 
53
- - Dataset: shmuhammad/AfriSenti-twitter-sentiment (Yoruba subset)
54
- - Data size: Specify the number of Yoruba tweets used for training and evaluation.
55
- - Data description: Briefly describe the content and distribution of sentiment labels in the dataset.
56
- - Data source: https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment
57
 
58
  ### Training hyperparameters
59
 
 
28
 
29
  This model is a fine-tuned version of the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) pre-trained model, specifically trained on the [shmuhammad/AfriSenti-twitter-sentiment](https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment) dataset focusing on Yoruba tweets. It aims to perform sentiment classification on Yoruba tweets.
30
  ## Key details:
31
+ - Type: Fine-tuned language model
32
+ - Base model: xlm-roberta-base
33
+ - Task: Yoruba tweet sentiment classification
34
+ - Dataset: shmuhammad/AfriSenti-twitter-sentiment (Yoruba subset)
35
 
36
 
37
  ## Intended uses:
38
+ - Classifying sentiment (positive, negative, neutral) on Yoruba tweets.
39
+ - Can be used as a starting point for further fine-tuning on specific Yoruba tweet classification tasks.
40
 
41
  ## Limitations:
42
+ - Trained on a limited dataset, potentially impacting performance on unseen data.
43
+ - Fine-tuned only for sentiment classification, not suitable for other tasks.
44
+ - Accuracy might not be optimal for all applications.
45
 
46
 
47
  ## Training and evaluation data
48
 
49
+ - train: Dataset({
50
+ features: ['tweet', 'label'],
51
+ num_rows: 8522
52
+ })
53
+ - validation: Dataset({
54
+ features: ['tweet', 'label'],
55
+ num_rows: 2090
56
+ })
57
 
58
  ## Training procedure
59
 
60
+ - Dataset: shmuhammad/AfriSenti-twitter-sentiment (Yoruba subset)
61
+ - Data size: Specify the number of Yoruba tweets used for training and evaluation.
62
+ - Data description: Briefly describe the content and distribution of sentiment labels in the dataset.
63
+ - Data source: https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment
64
 
65
  ### Training hyperparameters
66