FIT17 commited on
Commit
6802821
1 Parent(s): 839cec2

Initial commit

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1404.10 +/- 357.58
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:057afd43c6ccf0777ad60ff8f19448804f9dd72eca432931a556c42f8c55f083
3
+ size 129195
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.1
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc73762ea70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc73762eb00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc73762eb90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc73762ec20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc73762ecb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc73762ed40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc73762edd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc73762ee60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc73762eef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc73762ef80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc737632050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc737676c00>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1664696292076516370,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAj3GxPXwzTz6f6Bk/4QWnP96dJj9zAyY/XvEMP8aIQb8H6Ls+toI+PnrBnT/oQ7Q+Pw9cPgxzY7+K1BI+UUvuv6lKcT8o6F6/DgoSP1y7ur0IrCm/WAgAPctjJL8NZSnAPVlYP+hrzD5gLAs/2RCXv7+tQ8Cs4bs/JvORwJH5k7/ST4c+9TN5PQAAIEFWgzg/MFYtPxoebr595Iy/5ranvEGe+D8UtCs7yAFwPxJbxzuMJATAgUIau40NgsCvUko8C3gnQMk4UzzXaDhAXnOjvJN1l7/WSyDAYCwLP37pWD/URmA/SxmcP1IAfr0P5g5A2Alivbwzzz+/52M+44/ovxWAmbwzuyY/wMApv/MI2z/4pEI/hCY/Pyecdj8o35m+7gy3PzDTgb7Kg9Q+ecIivwbLQr9G6ew7VUjYP8LdmL+TdZe/6GvMPohy679+6Vg/9nBQP5CZML+kI94+kIRUP+/q0r+K1Pw+obyNPfMtaL/L1EA/TJ9vv1p81D+Vpfk9Vnuev1EAVMBOfRC/3YULwCg+N72YTuu/tX0rPoa7fj7uTSm/k4OAPAKkWL+Xh8Q9PVlYP+hrzD5gLAs/2RCXv5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMXxAjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICNm1O9AAAAALJ5278AAAAA2Q2KPQAAAACvTwBAAAAAAEQX0j0AAAAATKz+PwAAAADCF/W9AAAAAFT2/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNRrm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdIf2PQAAAAAuq/W/AAAAANYYm70AAAAARJ73PwAAAAAFpBe9AAAAAOwo/D8AAAAAWzUtPAAAAACAB+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRs+twAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIARET4AAAAAADfgvwAAAAB2srO9AAAAAJB0+T8AAAAAKvwHvgAAAAB6sPw/AAAAANUr+z0AAAAArfvZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFK+nrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDgQGA9AAAAAI+x7r8AAAAAAisDvgAAAACZxu8/AAAAALvnX70AAAAA/CT9PwAAAAAO2Pi8AAAAAJFd4b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYEgZYPoV6MAWyUTegDjAF0lEdApzQFfzBhyHV9lChoBkdAkP0owEhaDGgHTegDaAhHQKc3JUExIrh1fZQoaAZHQJOwzLjghr5oB03oA2gIR0CnOWoxpL26dX2UKGgGR0CV83u5z5oHaAdN6ANoCEdApz65VsDW9XV9lChoBkdAmndNTYNAkmgHTegDaAhHQKdAKs/6frd1fZQoaAZHQJmmBjpcHGFoB03oA2gIR0CnQzjy4FzNdX2UKGgGR0CWTBB6KLsKaAdN6ANoCEdAp0Vm3trsSnV9lChoBkdAl+itOARTTGgHTegDaAhHQKdKsw0wait1fZQoaAZHQJrkC4RVZLZoB03oA2gIR0CnTDswtapxdX2UKGgGR0Cayu98Z1mraAdN6ANoCEdAp09ZcZ9/jXV9lChoBkdAkkHBsImgJ2gHTegDaAhHQKdRlpzLfUF1fZQoaAZHQJoGBjQRf4RoB03oA2gIR0CnVtdBrvb5dX2UKGgGR0CaIbEK3NLUaAdN6ANoCEdAp1hLVjI7vHV9lChoBkdAl+JZcHGCI2gHTegDaAhHQKdbZaQFLWZ1fZQoaAZHQJpEQE8q4H5oB03oA2gIR0CnXaKVpsXSdX2UKGgGR0CW9NzAeq7zaAdN6ANoCEdAp2L36GgzxnV9lChoBkdAnLvVd1MdtGgHTegDaAhHQKdkZ72tdRl1fZQoaAZHQJrmSKJl8PZoB03oA2gIR0CnZ7WBreqJdX2UKGgGR0CaaUqGlANYaAdN6ANoCEdAp2n1RR/EwXV9lChoBkdAmc7WGEf1YmgHTegDaAhHQKdvVg9/z8R1fZQoaAZHQJ0FEuJ1q35oB03oA2gIR0CncMu/L1VYdX2UKGgGR0CYG0kxyn1naAdN6ANoCEdAp3Pd4LThHnV9lChoBkdAmFcq8L8aXWgHTegDaAhHQKd2GieumrN1fZQoaAZHQJt6Xl7tzCFoB03oA2gIR0Cne4c6eXiSdX2UKGgGR0CaWv8ujASGaAdN6ANoCEdAp30C1TisGXV9lChoBkdAgXPcgZCOWGgHTegDaAhHQKeAHe7cwg11fZQoaAZHQJnSUSYgJTloB03oA2gIR0CnglSoGY8ddX2UKGgGR0CcM7ijtXxOaAdN6ANoCEdAp4ePMjeKsXV9lChoBkdAmt5TEvTPSmgHTegDaAhHQKeI/t0FKTV1fZQoaAZHQJghAwGnn+1oB03oA2gIR0CnjB+ANG3GdX2UKGgGR0CKOeeHSF4+aAdN6ANoCEdAp45g86mwaHV9lChoBkdAkn2VcUuct2gHTegDaAhHQKeTxNucc2l1fZQoaAZHQIsBIF7laKVoB03oA2gIR0CnlT9B0ITodX2UKGgGR0CQyMWZZ0SzaAdN6ANoCEdAp5hNbkfcOHV9lChoBkdAlINRywOe8WgHTegDaAhHQKeafcEeQuF1fZQoaAZHQJlIVFuvUz9oB03oA2gIR0Cnn9+DWbw0dX2UKGgGR0CXY/FPznRtaAdN6ANoCEdAp6FWNrCWNXV9lChoBkdAmOAPgzguRWgHTegDaAhHQKekquwHJLd1fZQoaAZHQJiI5TP0I1NoB03oA2gIR0CnpuFjVhCudX2UKGgGR0CXDf+BH09RaAdN6ANoCEdAp6wg7PppvnV9lChoBkdAlDvNZNfw7WgHTecDaAhHQKethTgl4Tt1fZQoaAZHQJfY6nm7rcFoB03oA2gIR0CnsI4rJ8v3dX2UKGgGR0CTjGIHC4z8aAdN6ANoCEdAp7LV1r6+FnV9lChoBkdAmItHxz7uUmgHTegDaAhHQKe4I0IkZ751fZQoaAZHQJkn6Zpi7TVoB03oA2gIR0CnuYQXhwVCdX2UKGgGR0CVtfM2m52AaAdN6ANoCEdAp7ysaOxSpHV9lChoBkdAiSb6QeV9nmgHTegDaAhHQKe+4g9vCMx1fZQoaAZHQJZFfA9FF2FoB03oA2gIR0CnxD51FH8TdX2UKGgGR0CVFrrnDBM0aAdN6ANoCEdAp8Wm4I8hcXV9lChoBkdAlrrbxZuAJGgHTegDaAhHQKfIwvHtF8Z1fZQoaAZHQJkdQDDCP6toB03oA2gIR0Cnywk4WDYidX2UKGgGR0CXxas/pt78aAdN6ANoCEdAp9BjbYbsGHV9lChoBkdAmJbFv2oNu2gHTegDaAhHQKfR0KJEYwZ1fZQoaAZHQJoK4MNMGotoB03oA2gIR0Cn1QN52QnydX2UKGgGR0CbHHHymQ8waAdN6ANoCEdAp9c+dqcmSnV9lChoBkdAmjINAood/GgHTegDaAhHQKfcpcM3IdV1fZQoaAZHQJjpm8jAzpJoB03oA2gIR0Cn3iN/4IrwdX2UKGgGR0Cc8KuGbkOqaAdN6ANoCEdAp+GdSflIVnV9lChoBkdAm8p0VN5+pmgHTegDaAhHQKfj4/N7jT91fZQoaAZHQJn/TuIAOrhoB03oA2gIR0Cn6SsZxaPkdX2UKGgGR0CKycYYR/ViaAdN6ANoCEdAp+qbIvJzUHV9lChoBkdAl/6TH0btJGgHTegDaAhHQKftx7fHggp1fZQoaAZHQJkq8Gs3hn9oB03oA2gIR0Cn8AIU8FINdX2UKGgGR0CXKIRw6ySnaAdN6ANoCEdAp/VXjuKGcnV9lChoBkdAkuF1K9PDYWgHTegDaAhHQKf2ygzP8ht1fZQoaAZHQJXp8eHSF49oB03oA2gIR0Cn+fOKO1fFdX2UKGgGR0CShhWu5jH5aAdN6ANoCEdAp/w0AggX/HV9lChoBkdAlJj6lHjIaWgHTegDaAhHQKgBhQizLOl1fZQoaAZHQI1KI+bExZdoB03oA2gIR0CoAvRgqmTDdX2UKGgGR0CVX/+KTB69aAdN6ANoCEdAqAYL5j6N2nV9lChoBkdAcpu3+uNgjWgHTQ8BaAhHQKgGNEWqLjx1fZQoaAZHQJs+eef7JnxoB03oA2gIR0CoCEVdPci4dX2UKGgGR0CDlaTpxFRYaAdN6ANoCEdAqA3TH0btJHV9lChoBkdAmGyZ+H8CP2gHTegDaAhHQKgSVktmL+B1fZQoaAZHQI+81QXQ+lloB03oA2gIR0CoEn6Y3Ns4dX2UKGgGR0CVeNcVgx8EaAdN6ANoCEdAqBSLBZZB9nV9lChoBkdAfz1wVTJhfGgHTegDaAhHQKgZzAckt291fZQoaAZHQIjp/nr6ciJoB03oA2gIR0CoHoslsxfwdX2UKGgGR0CXvlMzuWrwaAdN6ANoCEdAqB60HyEtd3V9lChoBkdAkzCW4ZuQ62gHTegDaAhHQKgguH9FWn11fZQoaAZHQJsX/SE12q1oB03oA2gIR0CoJeaE8JUpdX2UKGgGR0CWKWf8dgfEaAdN6ANoCEdAqCpkUh3aBnV9lChoBkdAmO3akdmxuGgHTegDaAhHQKgqjHKfWc11fZQoaAZHQJZpsmJFb3ZoB03oA2gIR0CoLItbC79RdX2UKGgGR0CdVILronrqaAdN6ANoCEdAqDHiKaXrt3V9lChoBkdAk1/vNqxkd2gHTegDaAhHQKg2iaJAMUh1fZQoaAZHwHYgrIT4+KVoB03oA2gIR0CoNrOrhisodX2UKGgGR0CcbnUnogV5aAdN6ANoCEdAqDjPpB5X2nV9lChoBkdAnp0OQuEmIGgHTegDaAhHQKg+LmVZ9ux1fZQoaAZHQIjpo5Lh73RoB00vAmgIR0CoP6KuB+WodX2UKGgGR0CagavpyIYWaAdN6ANoCEdAqEKzYChexHV9lChoBkdAl/bKcmShamgHTegDaAhHQKhC3GPxQSB1fZQoaAZHQJf4tFQVKwpoB03oA2gIR0CoSm25xzaLdX2UKGgGR0CWcVKqXF98aAdN6ANoCEdAqEvUiW3Sa3V9lChoBkdAjekd2HLzPWgHTR0DaAhHQKhMoL/jsD51fZQoaAZHQJnQe8xsVL1oB03oA2gIR0CoTvD1GsmwdX2UKGgGR0CAf/E2Hck/aAdN6ANoCEdAqFZvyd4FA3V9lChoBkdAmjMXoxHoYGgHTegDaAhHQKhX6GYa5wx1fZQoaAZHQJoKMgwGnoBoB03oA2gIR0CoWLZiExqPdX2UKGgGR0CV65TdLxqgaAdN6ANoCEdAqFs4QQL/j3VlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21a72ebc1900ac0021a08836ed1487e6de18cff69078d84d6b8fa15a02fddf96
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2362ac0875bc0bc23d2bce768e4885a243efeebbe589d2dd0aa0399c3593a3f6
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.14
3
+ Stable-Baselines3: 1.6.1
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc73762ea70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc73762eb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc73762eb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc73762ec20>", "_build": "<function ActorCriticPolicy._build at 0x7fc73762ecb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc73762ed40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc73762edd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc73762ee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc73762eef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc73762ef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc737632050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc737676c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1664696292076516370, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAj3GxPXwzTz6f6Bk/4QWnP96dJj9zAyY/XvEMP8aIQb8H6Ls+toI+PnrBnT/oQ7Q+Pw9cPgxzY7+K1BI+UUvuv6lKcT8o6F6/DgoSP1y7ur0IrCm/WAgAPctjJL8NZSnAPVlYP+hrzD5gLAs/2RCXv7+tQ8Cs4bs/JvORwJH5k7/ST4c+9TN5PQAAIEFWgzg/MFYtPxoebr595Iy/5ranvEGe+D8UtCs7yAFwPxJbxzuMJATAgUIau40NgsCvUko8C3gnQMk4UzzXaDhAXnOjvJN1l7/WSyDAYCwLP37pWD/URmA/SxmcP1IAfr0P5g5A2Alivbwzzz+/52M+44/ovxWAmbwzuyY/wMApv/MI2z/4pEI/hCY/Pyecdj8o35m+7gy3PzDTgb7Kg9Q+ecIivwbLQr9G6ew7VUjYP8LdmL+TdZe/6GvMPohy679+6Vg/9nBQP5CZML+kI94+kIRUP+/q0r+K1Pw+obyNPfMtaL/L1EA/TJ9vv1p81D+Vpfk9Vnuev1EAVMBOfRC/3YULwCg+N72YTuu/tX0rPoa7fj7uTSm/k4OAPAKkWL+Xh8Q9PVlYP+hrzD5gLAs/2RCXv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMXxAjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICNm1O9AAAAALJ5278AAAAA2Q2KPQAAAACvTwBAAAAAAEQX0j0AAAAATKz+PwAAAADCF/W9AAAAAFT2/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNRrm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdIf2PQAAAAAuq/W/AAAAANYYm70AAAAARJ73PwAAAAAFpBe9AAAAAOwo/D8AAAAAWzUtPAAAAACAB+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRs+twAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIARET4AAAAAADfgvwAAAAB2srO9AAAAAJB0+T8AAAAAKvwHvgAAAAB6sPw/AAAAANUr+z0AAAAArfvZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFK+nrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDgQGA9AAAAAI+x7r8AAAAAAisDvgAAAACZxu8/AAAAALvnX70AAAAA/CT9PwAAAAAO2Pi8AAAAAJFd4b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYEgZYPoV6MAWyUTegDjAF0lEdApzQFfzBhyHV9lChoBkdAkP0owEhaDGgHTegDaAhHQKc3JUExIrh1fZQoaAZHQJOwzLjghr5oB03oA2gIR0CnOWoxpL26dX2UKGgGR0CV83u5z5oHaAdN6ANoCEdApz65VsDW9XV9lChoBkdAmndNTYNAkmgHTegDaAhHQKdAKs/6frd1fZQoaAZHQJmmBjpcHGFoB03oA2gIR0CnQzjy4FzNdX2UKGgGR0CWTBB6KLsKaAdN6ANoCEdAp0Vm3trsSnV9lChoBkdAl+itOARTTGgHTegDaAhHQKdKsw0wait1fZQoaAZHQJrkC4RVZLZoB03oA2gIR0CnTDswtapxdX2UKGgGR0Cayu98Z1mraAdN6ANoCEdAp09ZcZ9/jXV9lChoBkdAkkHBsImgJ2gHTegDaAhHQKdRlpzLfUF1fZQoaAZHQJoGBjQRf4RoB03oA2gIR0CnVtdBrvb5dX2UKGgGR0CaIbEK3NLUaAdN6ANoCEdAp1hLVjI7vHV9lChoBkdAl+JZcHGCI2gHTegDaAhHQKdbZaQFLWZ1fZQoaAZHQJpEQE8q4H5oB03oA2gIR0CnXaKVpsXSdX2UKGgGR0CW9NzAeq7zaAdN6ANoCEdAp2L36GgzxnV9lChoBkdAnLvVd1MdtGgHTegDaAhHQKdkZ72tdRl1fZQoaAZHQJrmSKJl8PZoB03oA2gIR0CnZ7WBreqJdX2UKGgGR0CaaUqGlANYaAdN6ANoCEdAp2n1RR/EwXV9lChoBkdAmc7WGEf1YmgHTegDaAhHQKdvVg9/z8R1fZQoaAZHQJ0FEuJ1q35oB03oA2gIR0CncMu/L1VYdX2UKGgGR0CYG0kxyn1naAdN6ANoCEdAp3Pd4LThHnV9lChoBkdAmFcq8L8aXWgHTegDaAhHQKd2GieumrN1fZQoaAZHQJt6Xl7tzCFoB03oA2gIR0Cne4c6eXiSdX2UKGgGR0CaWv8ujASGaAdN6ANoCEdAp30C1TisGXV9lChoBkdAgXPcgZCOWGgHTegDaAhHQKeAHe7cwg11fZQoaAZHQJnSUSYgJTloB03oA2gIR0CnglSoGY8ddX2UKGgGR0CcM7ijtXxOaAdN6ANoCEdAp4ePMjeKsXV9lChoBkdAmt5TEvTPSmgHTegDaAhHQKeI/t0FKTV1fZQoaAZHQJghAwGnn+1oB03oA2gIR0CnjB+ANG3GdX2UKGgGR0CKOeeHSF4+aAdN6ANoCEdAp45g86mwaHV9lChoBkdAkn2VcUuct2gHTegDaAhHQKeTxNucc2l1fZQoaAZHQIsBIF7laKVoB03oA2gIR0CnlT9B0ITodX2UKGgGR0CQyMWZZ0SzaAdN6ANoCEdAp5hNbkfcOHV9lChoBkdAlINRywOe8WgHTegDaAhHQKeafcEeQuF1fZQoaAZHQJlIVFuvUz9oB03oA2gIR0Cnn9+DWbw0dX2UKGgGR0CXY/FPznRtaAdN6ANoCEdAp6FWNrCWNXV9lChoBkdAmOAPgzguRWgHTegDaAhHQKekquwHJLd1fZQoaAZHQJiI5TP0I1NoB03oA2gIR0CnpuFjVhCudX2UKGgGR0CXDf+BH09RaAdN6ANoCEdAp6wg7PppvnV9lChoBkdAlDvNZNfw7WgHTecDaAhHQKethTgl4Tt1fZQoaAZHQJfY6nm7rcFoB03oA2gIR0CnsI4rJ8v3dX2UKGgGR0CTjGIHC4z8aAdN6ANoCEdAp7LV1r6+FnV9lChoBkdAmItHxz7uUmgHTegDaAhHQKe4I0IkZ751fZQoaAZHQJkn6Zpi7TVoB03oA2gIR0CnuYQXhwVCdX2UKGgGR0CVtfM2m52AaAdN6ANoCEdAp7ysaOxSpHV9lChoBkdAiSb6QeV9nmgHTegDaAhHQKe+4g9vCMx1fZQoaAZHQJZFfA9FF2FoB03oA2gIR0CnxD51FH8TdX2UKGgGR0CVFrrnDBM0aAdN6ANoCEdAp8Wm4I8hcXV9lChoBkdAlrrbxZuAJGgHTegDaAhHQKfIwvHtF8Z1fZQoaAZHQJkdQDDCP6toB03oA2gIR0Cnywk4WDYidX2UKGgGR0CXxas/pt78aAdN6ANoCEdAp9BjbYbsGHV9lChoBkdAmJbFv2oNu2gHTegDaAhHQKfR0KJEYwZ1fZQoaAZHQJoK4MNMGotoB03oA2gIR0Cn1QN52QnydX2UKGgGR0CbHHHymQ8waAdN6ANoCEdAp9c+dqcmSnV9lChoBkdAmjINAood/GgHTegDaAhHQKfcpcM3IdV1fZQoaAZHQJjpm8jAzpJoB03oA2gIR0Cn3iN/4IrwdX2UKGgGR0Cc8KuGbkOqaAdN6ANoCEdAp+GdSflIVnV9lChoBkdAm8p0VN5+pmgHTegDaAhHQKfj4/N7jT91fZQoaAZHQJn/TuIAOrhoB03oA2gIR0Cn6SsZxaPkdX2UKGgGR0CKycYYR/ViaAdN6ANoCEdAp+qbIvJzUHV9lChoBkdAl/6TH0btJGgHTegDaAhHQKftx7fHggp1fZQoaAZHQJkq8Gs3hn9oB03oA2gIR0Cn8AIU8FINdX2UKGgGR0CXKIRw6ySnaAdN6ANoCEdAp/VXjuKGcnV9lChoBkdAkuF1K9PDYWgHTegDaAhHQKf2ygzP8ht1fZQoaAZHQJXp8eHSF49oB03oA2gIR0Cn+fOKO1fFdX2UKGgGR0CShhWu5jH5aAdN6ANoCEdAp/w0AggX/HV9lChoBkdAlJj6lHjIaWgHTegDaAhHQKgBhQizLOl1fZQoaAZHQI1KI+bExZdoB03oA2gIR0CoAvRgqmTDdX2UKGgGR0CVX/+KTB69aAdN6ANoCEdAqAYL5j6N2nV9lChoBkdAcpu3+uNgjWgHTQ8BaAhHQKgGNEWqLjx1fZQoaAZHQJs+eef7JnxoB03oA2gIR0CoCEVdPci4dX2UKGgGR0CDlaTpxFRYaAdN6ANoCEdAqA3TH0btJHV9lChoBkdAmGyZ+H8CP2gHTegDaAhHQKgSVktmL+B1fZQoaAZHQI+81QXQ+lloB03oA2gIR0CoEn6Y3Ns4dX2UKGgGR0CVeNcVgx8EaAdN6ANoCEdAqBSLBZZB9nV9lChoBkdAfz1wVTJhfGgHTegDaAhHQKgZzAckt291fZQoaAZHQIjp/nr6ciJoB03oA2gIR0CoHoslsxfwdX2UKGgGR0CXvlMzuWrwaAdN6ANoCEdAqB60HyEtd3V9lChoBkdAkzCW4ZuQ62gHTegDaAhHQKgguH9FWn11fZQoaAZHQJsX/SE12q1oB03oA2gIR0CoJeaE8JUpdX2UKGgGR0CWKWf8dgfEaAdN6ANoCEdAqCpkUh3aBnV9lChoBkdAmO3akdmxuGgHTegDaAhHQKgqjHKfWc11fZQoaAZHQJZpsmJFb3ZoB03oA2gIR0CoLItbC79RdX2UKGgGR0CdVILronrqaAdN6ANoCEdAqDHiKaXrt3V9lChoBkdAk1/vNqxkd2gHTegDaAhHQKg2iaJAMUh1fZQoaAZHwHYgrIT4+KVoB03oA2gIR0CoNrOrhisodX2UKGgGR0CcbnUnogV5aAdN6ANoCEdAqDjPpB5X2nV9lChoBkdAnp0OQuEmIGgHTegDaAhHQKg+LmVZ9ux1fZQoaAZHQIjpo5Lh73RoB00vAmgIR0CoP6KuB+WodX2UKGgGR0CagavpyIYWaAdN6ANoCEdAqEKzYChexHV9lChoBkdAl/bKcmShamgHTegDaAhHQKhC3GPxQSB1fZQoaAZHQJf4tFQVKwpoB03oA2gIR0CoSm25xzaLdX2UKGgGR0CWcVKqXF98aAdN6ANoCEdAqEvUiW3Sa3V9lChoBkdAjekd2HLzPWgHTR0DaAhHQKhMoL/jsD51fZQoaAZHQJnQe8xsVL1oB03oA2gIR0CoTvD1GsmwdX2UKGgGR0CAf/E2Hck/aAdN6ANoCEdAqFZvyd4FA3V9lChoBkdAmjMXoxHoYGgHTegDaAhHQKhX6GYa5wx1fZQoaAZHQJoKMgwGnoBoB03oA2gIR0CoWLZiExqPdX2UKGgGR0CV65TdLxqgaAdN6ANoCEdAqFs4QQL/j3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf728b679accebc9dc9d8e73589325bfab2b20567d6fbc0bf57169bc3bc7328
3
+ size 1128370
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1404.0953444802785, "std_reward": 357.5843417699422, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-02T08:57:26.670594"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf6e91293e5029d9f1760c4eff5176031de66bd3de012f97438c17811c302e60
3
+ size 2763