FILM6912 commited on
Commit
71c0db8
1 Parent(s): 412f416

Upload patch.diff with huggingface_hub

Browse files
Files changed (1) hide show
  1. patch.diff +291 -0
patch.diff ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
2
+ index a0fbe4680..8b0ce2b13 100644
3
+ --- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
4
+ +++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
5
+ @@ -17,10 +17,10 @@ import json
6
+ import os
7
+ import shutil
8
+ import warnings
9
+ -
10
+ +from typing import List
11
+ import torch
12
+
13
+ -from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
14
+ +from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast, GenerationConfig
15
+ from transformers.convert_slow_tokenizer import TikTokenConverter
16
+
17
+
18
+ @@ -85,8 +85,12 @@ NUM_SHARDS = {
19
+ "65B": 8,
20
+ "70B": 8,
21
+ "70Bf": 8,
22
+ + "405B": 8,
23
+ + "405B-MP16": 16,
24
+ }
25
+
26
+ +CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
27
+ +
28
+
29
+ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
30
+ return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
31
+ @@ -107,9 +111,10 @@ def write_model(
32
+ input_base_path,
33
+ model_size=None,
34
+ safe_serialization=True,
35
+ - llama_version=1,
36
+ + llama_version="1",
37
+ vocab_size=None,
38
+ num_shards=None,
39
+ + instruct=False,
40
+ ):
41
+ os.makedirs(model_path, exist_ok=True)
42
+ tmp_model_path = os.path.join(model_path, "tmp")
43
+ @@ -125,18 +130,11 @@ def write_model(
44
+ dims_per_head = dim // n_heads
45
+ base = params.get("rope_theta", 10000.0)
46
+ inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
47
+ - if base > 10000.0 and llama_version != 3:
48
+ + if base > 10000.0 and float(llama_version) < 3:
49
+ max_position_embeddings = 16384
50
+ else:
51
+ - # Depending on the Llama version, the default max_position_embeddings has different values.
52
+ - if llama_version == 1:
53
+ - max_position_embeddings = 2048
54
+ - elif llama_version == 2:
55
+ - max_position_embeddings = 4096
56
+ - elif llama_version == 3:
57
+ - max_position_embeddings = 8192
58
+ -
59
+ - vocab_size = vocab_size if vocab_size is not None else 32000
60
+ + max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
61
+ +
62
+ if params.get("n_kv_heads", None) is not None:
63
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
64
+ num_key_value_heads_per_shard = num_key_value_heads // num_shards
65
+ @@ -144,8 +142,7 @@ def write_model(
66
+ else: # compatibility with other checkpoints
67
+ num_key_value_heads = n_heads
68
+ num_key_value_heads_per_shard = n_heads_per_shard
69
+ - key_value_dim = dims_per_head * num_key_value_heads
70
+ - print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
71
+ + key_value_dim = dim
72
+
73
+ # permute for sliced rotary
74
+ def permute(w, n_heads, dim1=dim, dim2=dim):
75
+ @@ -159,11 +156,9 @@ def write_model(
76
+ loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
77
+ else:
78
+ # Sharded
79
+ - loaded = [
80
+ - torch.load(os.path.join(input_base_path, file), map_location="cpu")
81
+ - for file in os.listdir(input_base_path)
82
+ - if file.endswith(".pth")
83
+ - ]
84
+ + checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
85
+ + print("Loading in order:", checkpoint_list)
86
+ + loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
87
+ param_count = 0
88
+ index_dict = {"weight_map": {}}
89
+ for layer_i in range(n_layers):
90
+ @@ -263,7 +258,7 @@ def write_model(
91
+ "lm_head.weight": loaded["output.weight"],
92
+ }
93
+ else:
94
+ - concat_dim = 0 if llama_version == 3 else 1
95
+ + concat_dim = 0 if llama_version in ['3', '3.1'] else 1
96
+ state_dict = {
97
+ "model.norm.weight": loaded[0]["norm.weight"],
98
+ "model.embed_tokens.weight": torch.cat(
99
+ @@ -282,6 +277,18 @@ def write_model(
100
+ write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
101
+ ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
102
+ multiple_of = params["multiple_of"] if "multiple_of" in params else 256
103
+ +
104
+ + if llama_version in ['3', '3.1']:
105
+ + bos_token_id = 128000
106
+ +
107
+ + if instruct:
108
+ + eos_token_id = [128001, 128008, 128009]
109
+ + else:
110
+ + eos_token_id = 128001
111
+ + else:
112
+ + bos_token_id = 1
113
+ + eos_token_id = 2
114
+ +
115
+ config = LlamaConfig(
116
+ hidden_size=dim,
117
+ intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
118
+ @@ -292,11 +299,21 @@ def write_model(
119
+ vocab_size=vocab_size,
120
+ rope_theta=base,
121
+ max_position_embeddings=max_position_embeddings,
122
+ - bos_token_id=128000 if llama_version == 3 else 1,
123
+ - eos_token_id=128001 if llama_version == 3 else 2,
124
+ + bos_token_id=bos_token_id,
125
+ + eos_token_id=eos_token_id,
126
+ )
127
+ config.save_pretrained(tmp_model_path)
128
+
129
+ + if instruct:
130
+ + generation_config = GenerationConfig(
131
+ + do_sample=True,
132
+ + temperature=0.6,
133
+ + top_p=0.9,
134
+ + bos_token_id=bos_token_id,
135
+ + eos_token_id=eos_token_id,
136
+ + )
137
+ + generation_config.save_pretrained(tmp_model_path)
138
+ +
139
+ # Make space so we can load the model properly now.
140
+ del state_dict
141
+ del loaded
142
+ @@ -313,7 +330,7 @@ def write_model(
143
+
144
+
145
+ class Llama3Converter(TikTokenConverter):
146
+ - def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
147
+ + def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):
148
+ super().__init__(vocab_file, **kwargs)
149
+ tokenizer = self.converted()
150
+ chat_template = (
151
+ @@ -327,34 +344,27 @@ class Llama3Converter(TikTokenConverter):
152
+ "{% endfor %}"
153
+ "{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
154
+ )
155
+ - num_reserved_special_tokens = 256
156
+ - special_tokens = [
157
+ - "<|begin_of_text|>",
158
+ - "<|end_of_text|>",
159
+ - "<|reserved_special_token_0|>",
160
+ - "<|reserved_special_token_1|>",
161
+ - "<|reserved_special_token_2|>",
162
+ - "<|reserved_special_token_3|>",
163
+ - "<|start_header_id|>",
164
+ - "<|end_header_id|>",
165
+ - "<|reserved_special_token_4|>",
166
+ - "<|eot_id|>", # end of turn
167
+ - ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
168
+ tokenizer.add_special_tokens(special_tokens)
169
+
170
+ self.tokenizer = PreTrainedTokenizerFast(
171
+ tokenizer_object=tokenizer,
172
+ bos_token="<|begin_of_text|>",
173
+ - eos_token="<|end_of_text|>",
174
+ - chat_template=chat_template,
175
+ + eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
176
+ + chat_template=chat_template if instruct else None,
177
+ model_input_names=["input_ids", "attention_mask"],
178
+ + model_max_length=model_max_length,
179
+ )
180
+
181
+
182
+ -def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
183
+ +def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):
184
+ tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
185
+ - if llama_version == 3:
186
+ - tokenizer = Llama3Converter(input_tokenizer_path).tokenizer
187
+ + if llama_version in ["3", "3.1"]:
188
+ + tokenizer = Llama3Converter(
189
+ + input_tokenizer_path,
190
+ + special_tokens,
191
+ + instruct,
192
+ + model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]
193
+ + ).tokenizer
194
+ else:
195
+ tokenizer = tokenizer_class(input_tokenizer_path)
196
+ print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
197
+ @@ -362,6 +372,37 @@ def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
198
+ return tokenizer
199
+
200
+
201
+ +DEFAULT_LLAMA_SPECIAL_TOKENS = {
202
+ + "3": [
203
+ + "<|begin_of_text|>",
204
+ + "<|end_of_text|>",
205
+ + "<|reserved_special_token_0|>",
206
+ + "<|reserved_special_token_1|>",
207
+ + "<|reserved_special_token_2|>",
208
+ + "<|reserved_special_token_3|>",
209
+ + "<|start_header_id|>",
210
+ + "<|end_header_id|>",
211
+ + "<|reserved_special_token_4|>",
212
+ + "<|eot_id|>", # end of turn
213
+ + ]
214
+ + + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
215
+ + "3.1": [
216
+ + "<|begin_of_text|>",
217
+ + "<|end_of_text|>",
218
+ + "<|reserved_special_token_0|>",
219
+ + "<|reserved_special_token_1|>",
220
+ + "<|finetune_right_pad_id|>",
221
+ + "<|reserved_special_token_2|>",
222
+ + "<|start_header_id|>",
223
+ + "<|end_header_id|>",
224
+ + "<|eom_id|>", # end of message
225
+ + "<|eot_id|>", # end of turn
226
+ + "<|python_tag|>",
227
+ + ]
228
+ + + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
229
+ +}
230
+ +
231
+ +
232
+ def main():
233
+ parser = argparse.ArgumentParser()
234
+ parser.add_argument(
235
+ @@ -383,9 +424,9 @@ def main():
236
+ # Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
237
+ parser.add_argument(
238
+ "--llama_version",
239
+ - choices=[1, 2, 3],
240
+ - default=1,
241
+ - type=int,
242
+ + choices=["1", "2", "3", "3.1"],
243
+ + default="1",
244
+ + type=str,
245
+ help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
246
+ )
247
+ parser.add_argument(
248
+ @@ -394,11 +435,34 @@ def main():
249
+ type=int,
250
+ help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
251
+ )
252
+ + parser.add_argument(
253
+ + "--special_tokens",
254
+ + default=None,
255
+ + type=List[str],
256
+ + help="The list of special tokens that should be added to the model.",
257
+ + )
258
+ + parser.add_argument(
259
+ + "--instruct",
260
+ + default=False,
261
+ + type=bool,
262
+ + help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",
263
+ + )
264
+ args = parser.parse_args()
265
+ if args.model_size is None and args.num_shards is None:
266
+ raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
267
+ + if args.special_tokens is None:
268
+ + args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS[str(args.llama_version)]
269
+ +
270
+ spm_path = os.path.join(args.input_dir, "tokenizer.model")
271
+ - vocab_size = len(write_tokenizer(args.output_dir, spm_path, llama_version=args.llama_version))
272
+ + vocab_size = len(
273
+ + write_tokenizer(
274
+ + args.output_dir,
275
+ + spm_path,
276
+ + llama_version=args.llama_version,
277
+ + special_tokens=args.special_tokens,
278
+ + instruct=args.instruct
279
+ + )
280
+ + )
281
+ if args.model_size != "tokenizer_only":
282
+ write_model(
283
+ model_path=args.output_dir,
284
+ @@ -408,6 +472,7 @@ def main():
285
+ llama_version=args.llama_version,
286
+ vocab_size=vocab_size,
287
+ num_shards=args.num_shards,
288
+ + instruct=args.instruct
289
+ )
290
+
291
+