Upload patch.diff with huggingface_hub
Browse files- patch.diff +291 -0
patch.diff
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
2 |
+
index a0fbe4680..8b0ce2b13 100644
|
3 |
+
--- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
4 |
+
+++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
5 |
+
@@ -17,10 +17,10 @@ import json
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import warnings
|
9 |
+
-
|
10 |
+
+from typing import List
|
11 |
+
import torch
|
12 |
+
|
13 |
+
-from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
|
14 |
+
+from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast, GenerationConfig
|
15 |
+
from transformers.convert_slow_tokenizer import TikTokenConverter
|
16 |
+
|
17 |
+
|
18 |
+
@@ -85,8 +85,12 @@ NUM_SHARDS = {
|
19 |
+
"65B": 8,
|
20 |
+
"70B": 8,
|
21 |
+
"70Bf": 8,
|
22 |
+
+ "405B": 8,
|
23 |
+
+ "405B-MP16": 16,
|
24 |
+
}
|
25 |
+
|
26 |
+
+CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
|
27 |
+
+
|
28 |
+
|
29 |
+
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
|
30 |
+
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
|
31 |
+
@@ -107,9 +111,10 @@ def write_model(
|
32 |
+
input_base_path,
|
33 |
+
model_size=None,
|
34 |
+
safe_serialization=True,
|
35 |
+
- llama_version=1,
|
36 |
+
+ llama_version="1",
|
37 |
+
vocab_size=None,
|
38 |
+
num_shards=None,
|
39 |
+
+ instruct=False,
|
40 |
+
):
|
41 |
+
os.makedirs(model_path, exist_ok=True)
|
42 |
+
tmp_model_path = os.path.join(model_path, "tmp")
|
43 |
+
@@ -125,18 +130,11 @@ def write_model(
|
44 |
+
dims_per_head = dim // n_heads
|
45 |
+
base = params.get("rope_theta", 10000.0)
|
46 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
47 |
+
- if base > 10000.0 and llama_version != 3:
|
48 |
+
+ if base > 10000.0 and float(llama_version) < 3:
|
49 |
+
max_position_embeddings = 16384
|
50 |
+
else:
|
51 |
+
- # Depending on the Llama version, the default max_position_embeddings has different values.
|
52 |
+
- if llama_version == 1:
|
53 |
+
- max_position_embeddings = 2048
|
54 |
+
- elif llama_version == 2:
|
55 |
+
- max_position_embeddings = 4096
|
56 |
+
- elif llama_version == 3:
|
57 |
+
- max_position_embeddings = 8192
|
58 |
+
-
|
59 |
+
- vocab_size = vocab_size if vocab_size is not None else 32000
|
60 |
+
+ max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
|
61 |
+
+
|
62 |
+
if params.get("n_kv_heads", None) is not None:
|
63 |
+
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
|
64 |
+
num_key_value_heads_per_shard = num_key_value_heads // num_shards
|
65 |
+
@@ -144,8 +142,7 @@ def write_model(
|
66 |
+
else: # compatibility with other checkpoints
|
67 |
+
num_key_value_heads = n_heads
|
68 |
+
num_key_value_heads_per_shard = n_heads_per_shard
|
69 |
+
- key_value_dim = dims_per_head * num_key_value_heads
|
70 |
+
- print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
|
71 |
+
+ key_value_dim = dim
|
72 |
+
|
73 |
+
# permute for sliced rotary
|
74 |
+
def permute(w, n_heads, dim1=dim, dim2=dim):
|
75 |
+
@@ -159,11 +156,9 @@ def write_model(
|
76 |
+
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
77 |
+
else:
|
78 |
+
# Sharded
|
79 |
+
- loaded = [
|
80 |
+
- torch.load(os.path.join(input_base_path, file), map_location="cpu")
|
81 |
+
- for file in os.listdir(input_base_path)
|
82 |
+
- if file.endswith(".pth")
|
83 |
+
- ]
|
84 |
+
+ checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
|
85 |
+
+ print("Loading in order:", checkpoint_list)
|
86 |
+
+ loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
|
87 |
+
param_count = 0
|
88 |
+
index_dict = {"weight_map": {}}
|
89 |
+
for layer_i in range(n_layers):
|
90 |
+
@@ -263,7 +258,7 @@ def write_model(
|
91 |
+
"lm_head.weight": loaded["output.weight"],
|
92 |
+
}
|
93 |
+
else:
|
94 |
+
- concat_dim = 0 if llama_version == 3 else 1
|
95 |
+
+ concat_dim = 0 if llama_version in ['3', '3.1'] else 1
|
96 |
+
state_dict = {
|
97 |
+
"model.norm.weight": loaded[0]["norm.weight"],
|
98 |
+
"model.embed_tokens.weight": torch.cat(
|
99 |
+
@@ -282,6 +277,18 @@ def write_model(
|
100 |
+
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
101 |
+
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
|
102 |
+
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
|
103 |
+
+
|
104 |
+
+ if llama_version in ['3', '3.1']:
|
105 |
+
+ bos_token_id = 128000
|
106 |
+
+
|
107 |
+
+ if instruct:
|
108 |
+
+ eos_token_id = [128001, 128008, 128009]
|
109 |
+
+ else:
|
110 |
+
+ eos_token_id = 128001
|
111 |
+
+ else:
|
112 |
+
+ bos_token_id = 1
|
113 |
+
+ eos_token_id = 2
|
114 |
+
+
|
115 |
+
config = LlamaConfig(
|
116 |
+
hidden_size=dim,
|
117 |
+
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
|
118 |
+
@@ -292,11 +299,21 @@ def write_model(
|
119 |
+
vocab_size=vocab_size,
|
120 |
+
rope_theta=base,
|
121 |
+
max_position_embeddings=max_position_embeddings,
|
122 |
+
- bos_token_id=128000 if llama_version == 3 else 1,
|
123 |
+
- eos_token_id=128001 if llama_version == 3 else 2,
|
124 |
+
+ bos_token_id=bos_token_id,
|
125 |
+
+ eos_token_id=eos_token_id,
|
126 |
+
)
|
127 |
+
config.save_pretrained(tmp_model_path)
|
128 |
+
|
129 |
+
+ if instruct:
|
130 |
+
+ generation_config = GenerationConfig(
|
131 |
+
+ do_sample=True,
|
132 |
+
+ temperature=0.6,
|
133 |
+
+ top_p=0.9,
|
134 |
+
+ bos_token_id=bos_token_id,
|
135 |
+
+ eos_token_id=eos_token_id,
|
136 |
+
+ )
|
137 |
+
+ generation_config.save_pretrained(tmp_model_path)
|
138 |
+
+
|
139 |
+
# Make space so we can load the model properly now.
|
140 |
+
del state_dict
|
141 |
+
del loaded
|
142 |
+
@@ -313,7 +330,7 @@ def write_model(
|
143 |
+
|
144 |
+
|
145 |
+
class Llama3Converter(TikTokenConverter):
|
146 |
+
- def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
|
147 |
+
+ def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):
|
148 |
+
super().__init__(vocab_file, **kwargs)
|
149 |
+
tokenizer = self.converted()
|
150 |
+
chat_template = (
|
151 |
+
@@ -327,34 +344,27 @@ class Llama3Converter(TikTokenConverter):
|
152 |
+
"{% endfor %}"
|
153 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
|
154 |
+
)
|
155 |
+
- num_reserved_special_tokens = 256
|
156 |
+
- special_tokens = [
|
157 |
+
- "<|begin_of_text|>",
|
158 |
+
- "<|end_of_text|>",
|
159 |
+
- "<|reserved_special_token_0|>",
|
160 |
+
- "<|reserved_special_token_1|>",
|
161 |
+
- "<|reserved_special_token_2|>",
|
162 |
+
- "<|reserved_special_token_3|>",
|
163 |
+
- "<|start_header_id|>",
|
164 |
+
- "<|end_header_id|>",
|
165 |
+
- "<|reserved_special_token_4|>",
|
166 |
+
- "<|eot_id|>", # end of turn
|
167 |
+
- ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
|
168 |
+
tokenizer.add_special_tokens(special_tokens)
|
169 |
+
|
170 |
+
self.tokenizer = PreTrainedTokenizerFast(
|
171 |
+
tokenizer_object=tokenizer,
|
172 |
+
bos_token="<|begin_of_text|>",
|
173 |
+
- eos_token="<|end_of_text|>",
|
174 |
+
- chat_template=chat_template,
|
175 |
+
+ eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
|
176 |
+
+ chat_template=chat_template if instruct else None,
|
177 |
+
model_input_names=["input_ids", "attention_mask"],
|
178 |
+
+ model_max_length=model_max_length,
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
-def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
|
183 |
+
+def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):
|
184 |
+
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
|
185 |
+
- if llama_version == 3:
|
186 |
+
- tokenizer = Llama3Converter(input_tokenizer_path).tokenizer
|
187 |
+
+ if llama_version in ["3", "3.1"]:
|
188 |
+
+ tokenizer = Llama3Converter(
|
189 |
+
+ input_tokenizer_path,
|
190 |
+
+ special_tokens,
|
191 |
+
+ instruct,
|
192 |
+
+ model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]
|
193 |
+
+ ).tokenizer
|
194 |
+
else:
|
195 |
+
tokenizer = tokenizer_class(input_tokenizer_path)
|
196 |
+
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
197 |
+
@@ -362,6 +372,37 @@ def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
|
198 |
+
return tokenizer
|
199 |
+
|
200 |
+
|
201 |
+
+DEFAULT_LLAMA_SPECIAL_TOKENS = {
|
202 |
+
+ "3": [
|
203 |
+
+ "<|begin_of_text|>",
|
204 |
+
+ "<|end_of_text|>",
|
205 |
+
+ "<|reserved_special_token_0|>",
|
206 |
+
+ "<|reserved_special_token_1|>",
|
207 |
+
+ "<|reserved_special_token_2|>",
|
208 |
+
+ "<|reserved_special_token_3|>",
|
209 |
+
+ "<|start_header_id|>",
|
210 |
+
+ "<|end_header_id|>",
|
211 |
+
+ "<|reserved_special_token_4|>",
|
212 |
+
+ "<|eot_id|>", # end of turn
|
213 |
+
+ ]
|
214 |
+
+ + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
|
215 |
+
+ "3.1": [
|
216 |
+
+ "<|begin_of_text|>",
|
217 |
+
+ "<|end_of_text|>",
|
218 |
+
+ "<|reserved_special_token_0|>",
|
219 |
+
+ "<|reserved_special_token_1|>",
|
220 |
+
+ "<|finetune_right_pad_id|>",
|
221 |
+
+ "<|reserved_special_token_2|>",
|
222 |
+
+ "<|start_header_id|>",
|
223 |
+
+ "<|end_header_id|>",
|
224 |
+
+ "<|eom_id|>", # end of message
|
225 |
+
+ "<|eot_id|>", # end of turn
|
226 |
+
+ "<|python_tag|>",
|
227 |
+
+ ]
|
228 |
+
+ + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
|
229 |
+
+}
|
230 |
+
+
|
231 |
+
+
|
232 |
+
def main():
|
233 |
+
parser = argparse.ArgumentParser()
|
234 |
+
parser.add_argument(
|
235 |
+
@@ -383,9 +424,9 @@ def main():
|
236 |
+
# Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
|
237 |
+
parser.add_argument(
|
238 |
+
"--llama_version",
|
239 |
+
- choices=[1, 2, 3],
|
240 |
+
- default=1,
|
241 |
+
- type=int,
|
242 |
+
+ choices=["1", "2", "3", "3.1"],
|
243 |
+
+ default="1",
|
244 |
+
+ type=str,
|
245 |
+
help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
|
246 |
+
)
|
247 |
+
parser.add_argument(
|
248 |
+
@@ -394,11 +435,34 @@ def main():
|
249 |
+
type=int,
|
250 |
+
help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
|
251 |
+
)
|
252 |
+
+ parser.add_argument(
|
253 |
+
+ "--special_tokens",
|
254 |
+
+ default=None,
|
255 |
+
+ type=List[str],
|
256 |
+
+ help="The list of special tokens that should be added to the model.",
|
257 |
+
+ )
|
258 |
+
+ parser.add_argument(
|
259 |
+
+ "--instruct",
|
260 |
+
+ default=False,
|
261 |
+
+ type=bool,
|
262 |
+
+ help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",
|
263 |
+
+ )
|
264 |
+
args = parser.parse_args()
|
265 |
+
if args.model_size is None and args.num_shards is None:
|
266 |
+
raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
|
267 |
+
+ if args.special_tokens is None:
|
268 |
+
+ args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS[str(args.llama_version)]
|
269 |
+
+
|
270 |
+
spm_path = os.path.join(args.input_dir, "tokenizer.model")
|
271 |
+
- vocab_size = len(write_tokenizer(args.output_dir, spm_path, llama_version=args.llama_version))
|
272 |
+
+ vocab_size = len(
|
273 |
+
+ write_tokenizer(
|
274 |
+
+ args.output_dir,
|
275 |
+
+ spm_path,
|
276 |
+
+ llama_version=args.llama_version,
|
277 |
+
+ special_tokens=args.special_tokens,
|
278 |
+
+ instruct=args.instruct
|
279 |
+
+ )
|
280 |
+
+ )
|
281 |
+
if args.model_size != "tokenizer_only":
|
282 |
+
write_model(
|
283 |
+
model_path=args.output_dir,
|
284 |
+
@@ -408,6 +472,7 @@ def main():
|
285 |
+
llama_version=args.llama_version,
|
286 |
+
vocab_size=vocab_size,
|
287 |
+
num_shards=args.num_shards,
|
288 |
+
+ instruct=args.instruct
|
289 |
+
)
|
290 |
+
|
291 |
+
|