FILM6912 commited on
Commit
233efe8
·
verified ·
1 Parent(s): adda7c1

Add files using upload-large-folder tool

Browse files
Files changed (1) hide show
  1. inference/generate.py +137 -0
inference/generate.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from argparse import ArgumentParser
4
+ from typing import List
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+ from transformers import AutoTokenizer
9
+ from safetensors.torch import load_model
10
+
11
+ from model import Transformer, ModelArgs
12
+
13
+
14
+ def sample(logits, temperature: float = 1.0):
15
+ logits = logits / max(temperature, 1e-5)
16
+ probs = torch.softmax(logits, dim=-1)
17
+ return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
18
+
19
+
20
+ @torch.inference_mode()
21
+ def generate(
22
+ model: Transformer,
23
+ prompt_tokens: List[List[int]],
24
+ max_new_tokens: int,
25
+ eos_id: int,
26
+ temperature: float = 1.0
27
+ ) -> List[List[int]]:
28
+ prompt_lens = [len(t) for t in prompt_tokens]
29
+ assert max(prompt_lens) <= model.max_seq_len
30
+ total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
31
+ tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
32
+ for i, t in enumerate(prompt_tokens):
33
+ tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
34
+ prev_pos = 0
35
+ finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
36
+ prompt_mask = tokens != -1
37
+ for cur_pos in range(min(prompt_lens), total_len):
38
+ logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
39
+ if temperature > 0:
40
+ next_token = sample(logits, temperature)
41
+ else:
42
+ next_token = logits.argmax(dim=-1)
43
+ next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
44
+ tokens[:, cur_pos] = next_token
45
+ finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
46
+ prev_pos = cur_pos
47
+ if finished.all():
48
+ break
49
+ completion_tokens = []
50
+ for i, toks in enumerate(tokens.tolist()):
51
+ toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
52
+ if eos_id in toks:
53
+ toks = toks[:toks.index(eos_id)]
54
+ completion_tokens.append(toks)
55
+ return completion_tokens
56
+
57
+
58
+ def main(
59
+ ckpt_path: str,
60
+ config: str,
61
+ input_file: str = "",
62
+ interactive: bool = True,
63
+ max_new_tokens: int = 100,
64
+ temperature: float = 1.0,
65
+ ) -> None:
66
+ world_size = int(os.getenv("WORLD_SIZE", "1"))
67
+ rank = int(os.getenv("RANK", "0"))
68
+ local_rank = int(os.getenv("LOCAL_RANK", "0"))
69
+ if world_size > 1:
70
+ dist.init_process_group("nccl")
71
+ global print
72
+ if rank != 0:
73
+ print = lambda *_, **__: None
74
+ torch.cuda.set_device(local_rank)
75
+ torch.set_default_dtype(torch.bfloat16)
76
+ torch.set_num_threads(8)
77
+ torch.manual_seed(965)
78
+ with open(config) as f:
79
+ args = ModelArgs(**json.load(f))
80
+ print(args)
81
+ with torch.device("cuda"):
82
+ model = Transformer(args)
83
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
84
+ tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
85
+ load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
86
+
87
+ if interactive:
88
+ messages = []
89
+ while True:
90
+ if world_size == 1:
91
+ prompt = input(">>> ")
92
+ elif rank == 0:
93
+ prompt = input(">>> ")
94
+ objects = [prompt]
95
+ dist.broadcast_object_list(objects, 0)
96
+ else:
97
+ objects = [None]
98
+ dist.broadcast_object_list(objects, 0)
99
+ prompt = objects[0]
100
+ if prompt == "/exit":
101
+ break
102
+ elif prompt == "/clear":
103
+ messages.clear()
104
+ continue
105
+ messages.append({"role": "user", "content": prompt})
106
+ prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
107
+ completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
108
+ completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
109
+ print(completion)
110
+ messages.append({"role": "assistant", "content": completion})
111
+ else:
112
+ with open(input_file) as f:
113
+ prompts = [line.strip() for line in f.readlines()]
114
+ assert len(prompts) <= args.max_batch_size
115
+ prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
116
+ completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
117
+ completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
118
+ for prompt, completion in zip(prompts, completions):
119
+ print("Prompt:", prompt)
120
+ print("Completion:", completion)
121
+ print()
122
+
123
+ if world_size > 1:
124
+ dist.destroy_process_group()
125
+
126
+
127
+ if __name__ == "__main__":
128
+ parser = ArgumentParser()
129
+ parser.add_argument("--ckpt-path", type=str, required=True)
130
+ parser.add_argument("--config", type=str, required=True)
131
+ parser.add_argument("--input-file", type=str, default="")
132
+ parser.add_argument("--interactive", action="store_true")
133
+ parser.add_argument("--max-new-tokens", type=int, default=200)
134
+ parser.add_argument("--temperature", type=float, default=0.2)
135
+ args = parser.parse_args()
136
+ assert args.input_file or args.interactive
137
+ main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)